Question

Solve the following differential equations, using the specified boundary conditions.
(a) $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=0$, where $y=2$ and $\frac{d y}{d x}=-3$ when $x=0$
(b) $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+13 y=0$, where $y=1$ and $\frac{d y}{d x}=2$ when $x=0$
(c) $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0$, where $y=2$ and $\frac{d y}{d x}=4$ when $x=0$

Answer
(a) Auxiliary equation: $\lambda^{2}+3 \lambda+2=0$

Factorises to give: $(\lambda+1)(\lambda+2)=0$
so two distinct real roots $\lambda_{1}=-1$ and $\lambda_{2}=-2$

$$
\text { General solution : } \begin{aligned}
y & =A e_{-x}+B e^{-2 x} \\
\frac{d y}{d x} & =-A e^{-x}-2 e^{-2 x}
\end{aligned}
$$

$$
\text { Boundary conditions : } 2=A+B
$$

$$
\begin{aligned}
-3 & =-A-2 B \\
\Rightarrow B & =1 \text { and } A=1
\end{aligned}
$$

Particular solution : $y=e^{-x}+B e^{-2 x}$
(b) Auxiliary equation: $\lambda^{2}+6 \lambda+13=0$
$\lambda_{1}, \lambda_{2}=\frac{-6 \pm \sqrt{36-52}}{2}$
(a pair of complex conjugate roots)

$$
\begin{aligned}
\text { General solution : } y & =e_{-3 x}(A \cos (2 x)+B \sin (2 x)) \\
\frac{d y}{d x} & =e^{-3 x}((2 B-2 A) \cos (2 x)-(2 A+3 B) \sin 2 x)
\end{aligned}
$$

Boundary conditions : $1=A$

$$
\begin{aligned}
2 & =2 B-3 A \\
\Rightarrow a & =1 \text { and } B=\frac{5}{2}
\end{aligned}
$$

Particular solution : $y=e^{-3 x}\left(\cos 2 x+\frac{5}{2} \sin 2 x\right)$
(c) Auxiliary equation: $\lambda^{2}-6 \lambda+9=0$

Factorises to give: $(\lambda+3)^{2}=0$
so two repeated real roots $\lambda_{1}=\lambda_{2}=3$

$$
\text { General solution : } y=(A+B x) e^{3 x}
$$

$$
\frac{d y}{d x}=3 A e^{3 x}+B e^{3 x}+3 B x e^{3 x}
$$

Boundary conditions: $2=A$
$4=3 A+B$
$\Rightarrow A=2$ and $B=-2$
Particular solution: $y=2(1-x) e^{3 x}$

