Question

Solve the following differential equations, using the specified boundary conditions.

- (a) d²y/dx² + 3dy/dx + 2y = 0, where y = 2 and dy/dx = -3 when x = 0
 (b) d²y/dx² + 6dy/dx + 13y = 0, where y = 1 and dy/dx = 2 when x = 0
 (c) d²y/dx² 6dy/dx + 9y = 0, where y = 2 and dy/dx = 4 when x = 0
 Answer
 (a) Auxiliary equation: λ² + 3λ + 2 = 0
- (a) Auxiliary equation: $\lambda^2 + 3\lambda + 2 = 0$ Factorises to give: $(\lambda + 1)(\lambda + 2) = 0$ so two distinct real roots $\lambda_1 = -1$ and $\lambda_2 = -2$

General solution :
$$y = Ae_{-x} + Be^{-2x}$$

 $\frac{dy}{dx} = -Ae^{-x} - 2e^{-2x}$
Boundary conditions : $2 = A + B$
 $-3 = -A - 2B$
 $\Rightarrow B = 1$ and $A = 1$
Particular solution : $y = e^{-x} + Be^{-2x}$

(b) Auxiliary equation: $\lambda^2 + 6\lambda + 13 = 0$ $\lambda_1, \lambda_2 = \frac{-6 \pm \sqrt{36-52}}{2}$ (a pair of complex conjugate roots)

General solution :
$$y = e_{-3x}(A\cos(2x) + B\sin(2x))$$

$$\frac{dy}{dx} = e^{-3x}((2B - 2A)\cos(2x) - (2A + 3B)\sin 2x)$$
Boundary conditions : $1 = A$
 $2 = 2B - 3A$
 $\Rightarrow a = 1$ and $B = \frac{5}{2}$
Particular solution : $y = e^{-3x}(\cos 2x + \frac{5}{2}\sin 2x)$

(c) Auxiliary equation: $\lambda^2 - 6\lambda + 9 = 0$ Factorises to give: $(\lambda + 3)^2 = 0$ so two repeated real roots $\lambda_1 = \lambda_2 = 3$

General solution :
$$y = (A + Bx)e^{3x}$$

 $\frac{dy}{dx} = 3Ae^{3x} + Be^{3x} + 3Bxe^{3x}$
Boundary conditions : $2 = A$
 $4 = 3A + B$
 $\Rightarrow A = 2$ and $B = -2$
Particular solution : $y = 2(1 - x)e^{3x}$