## Question

Find the first order partial differential equations for which the following are general solutions and describe them as linear, homogeneous,etc. as appropriate (in each case $f$ is an arbitrary real function)
(a) $u=x f\left(x^{2}+y^{2}\right)$
(b) $u=x y+(x-y) f(x+y)$
(c) $u=x+f(u y)$
(d) $u=f\left(\frac{x y}{u}\right)$

Answer
(a) $\begin{aligned} & u_{x}=f\left(x^{2}+y^{2}\right)+2 x^{2} f^{\prime}\left(x^{2}+y^{2}\right) \\ & 2 y x f^{\prime}\left(x^{2}+y^{2}\right)\end{aligned}$

Therefore

$$
\begin{aligned}
x y u_{x} & =x y f+2 x^{3} y f^{\prime} \\
-x^{2} u_{y} & =-2 x^{3} y f^{\prime} \\
x y u_{x}-x^{2} u_{y} & =x y f
\end{aligned}
$$

$$
\text { or } x y u_{x}-x^{2} u_{y}=y u \text {, linear and homogeneous. }
$$

(b) $\left.u_{x}=y+f(x+y)+9 x-y\right) f^{\prime}(x+y)$
$u_{y}=x-f(x+y)+(x-y) f^{\prime}(x+y)$
Therefore $(x-y)\left(u_{x}-u_{y}\right)=2 u-\left(x^{2}+y^{2}\right)$, linear non-homogeneous
(c) $\begin{aligned} & u_{x}=1+\begin{array}{l}f^{\prime}(u y) u_{x} \Rightarrow u_{x}\left(1-f^{\prime}(u y)=1\right. \\ u_{y}= \\ f^{\prime}(u y)\left(y u_{y}+u\right)\end{array}\end{aligned}$ $u u_{x}=u+u u_{x} f^{\prime}$
$-y u_{y}=-f^{\prime}\left(y u_{y}+u\right)$
$\Rightarrow u u_{x}-y u_{y}=u$, quasi-linear
(d) $x u_{x}-y u_{y}=0$ linear, homogeneous

