Question

The random pair X and Y has the distribution

			y		
		2	3	4	Total
	1	$\frac{1}{12}$	$\frac{1}{6}$	0	_
\boldsymbol{x}	2	$\frac{1}{6}$	Ŏ	$\frac{1}{3}$	_
	3	$\frac{1}{12}$	$\frac{1}{6}$	Ö	_
		_	_	_	1

- (a) Are X and Y independent? Give reasons.
- (b) Find the conditional pmf of Y given that X=2. Hence find E(Y|X=2).

Answer

The probability table is

			y		
		2	3	4	Total
	1	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
x	2	$\frac{1}{6}$	Ŏ	$\frac{1}{3}$	$\frac{1}{2}$
	3	$\frac{1}{12}$	$\frac{1}{6}$	Ö	$\frac{\overline{1}}{4}$
		$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1

- (a) Since $P(X=1,Y=4) \neq P(X=1) \cdot P(Y=4) \ (0 \neq \frac{1}{4} \cdot \frac{1}{3})$ X and Y are dependent.
- (b) The conditional distribution of Y|X=2 is

$$\begin{array}{c|cccc} y & f(y|X=2) \\ \hline 2 & \frac{1}{6} \div \frac{1}{2} & \frac{1}{3} \\ 3 & 0 \div \frac{1}{3} & 0 \\ 4 & \frac{1}{3} \div \frac{1}{2} & \frac{2}{3} \\ \end{array}$$

$$E(Y|X=2) = 2 \cdot \frac{1}{3} + 3 \cdot 0 + 4 \cdot \frac{2}{3} = \frac{10}{3}.$$