QUESTION Show that every 2×2 matrix A for which $A^{2}=0$ has $\operatorname{det} A=0$ and $\operatorname{tr} A=0$.
ANSWER
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ c a+d c & c b+d^{2}\end{array}\right]=\left[\begin{array}{cc}a^{2}+b c & b(a+d) \\ c(a+d) & b c+d^{2}\end{array}\right]$
If $b \neq 0$ and $c \neq 0$ then $a+d=\operatorname{tr} A=0$ and $a^{2}+b c=0$. Hence $\operatorname{det} A=$ $a d-b c=-a^{2}-b c=0$;or use $\operatorname{det}\left(A^{2}\right)=(\operatorname{det} A)^{2}$. [The cases where either b or $c=0$ need to be considered separately.]
The general matrix with $A^{2}=0$ (and $b \neq 0$) can be written
$\left[\begin{array}{cc}a & b \\ -\frac{a^{2}}{b} & -a\end{array}\right]$

