QUESTION Show that every 2×2 matrix A for which $A^2 = 0$ has detA=0 and trA=0.

ANSWER $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + bc & ab + bd \\ ca + dc & cb + d^2 \end{bmatrix} = \begin{bmatrix} a^2 + bc & b(a + d) \\ c(a + d) & bc + d^2 \end{bmatrix}$ If $b \neq 0$ and $c \neq 0$ then a + d = trA = 0 and $a^2 + bc = 0$. Hence det $A = ad - bc = -a^2 - bc = 0$; or use det $(A^2) = (\text{det}A)^2$. [The cases where either b or c=0 need to be considered separately.] The general matrix with $A^2 = 0$ (and $b \neq 0$) can be written $\begin{bmatrix} a & b \end{bmatrix}$

$$\begin{bmatrix} -\frac{a^2}{b} & -a \end{bmatrix}$$