Question

State Rouche's Theorem, and use it to show that all the roots of the equation

$$
z^{6}+(1+i) z+1=0
$$

lie in the annulus $\frac{1}{2} \leq|z|<\frac{5}{4}$.
Use the argument principle to determine how many of these roots lie in the quadrant $0<\arg z<\frac{1}{2} \pi$.

Answer

Rouche's Theorem states that if $f(z)$ and $g(z)$ are both analytic inside and on the closed contour C, and if $|g(z)|<|f(z)|$ on C then $f(z)$ and $F(z)+g(z)$ have the same number of zeros inside C.
i) Let $f(z)=1, g(z)=z^{6}+(1+i) z$.

Then for $|z|=\frac{1}{2},|g(z)| \leq\left(\frac{1}{2}\right)^{6}+\frac{1}{2} \sqrt{2}<1=|f(z)|$
$f(z)$ has no zeros inside $|z|=\frac{1}{2}$, and so
$f(z)+g(z)$ has none inside $|z|=\frac{1}{2}$.
ii) Let $f(z)=z^{6}, g(z)=(1+i) z+1$

Then for $|z|=\frac{5}{4},|g(z)| \leq \sqrt{2} \frac{5}{4}+1 \approx 2.77$
$|f(z)|=\left(\frac{5}{4}\right)^{6} \approx 3.81$
$f(z)$ has six zeros inside $|z|=\frac{5}{4}$, and so
$f(z)+g(z)$ has all six inside $|z|=\frac{5}{4}$.
Now consider the contour C in the first quadrant.
DIAGRAM
I. On $O A f=x^{6}+x+1+i x$ and $\tan \arg z=\frac{x}{x^{6}+x+1}$. This is continuous for $x>0$, it is zero at 0 and tends to zero as $R \rightarrow \infty$. So $[\arg f(z)]_{O A}=\epsilon$ (something small)
II. On $B O z=i y$ so $f=-y^{6}-y+1+i y$ and $\tan \arg z=\frac{y}{1-y-y^{6}}$. Now the derivative of $1-y-y^{6}$ is $-1-6 y^{5}$ which is negative for all $y>0$. So $1-y-y^{6}$ has just one positive root. Thus the graph of $\tan \arg z$ is DIAGRAM

Hence $[\arg z]_{B O}=-\pi+\delta(\delta$ is small $)$
III. On $A B z=R e^{i \theta}$ and $f(z)=R^{6} e^{6 i \theta}(1+w),|w|$ is small.

So as θ goes from 0 to $\pi 2,[\arg f(z)]_{A B}=3 \pi+\eta, \eta$ is small.
Thus $\frac{1}{2 \pi}[\arg f(z)]_{C}=1$ since it must be an integer.
Thus the equation has 1 root in the first quadrant.

