Question

Let ℓ be a hyperbolic line in **H**, and let m and n be elements of Möb(**H**) satisfying $m(\ell) = \ell = n(\ell)$. Prove or give a counter-example to the following claim: m and n commute; that is, $m \circ n = n \circ m$.

Answer

Consider ℓ the positive imaginary axis, so that $\operatorname{stab}_{\operatorname{M\"ob}(\mathbf{H})}(\ell) = G_{\ell}$ is generated by $\ell_a(z) = az \ (a > 0), k(z) = \frac{-1}{z}$ and $B(z) = -\overline{z}$.

• $\ell_a \circ B(z) = -a\bar{z}$ and $B \circ \ell_a(z) = -a\bar{z}$ (since $a \in \mathbf{R}$) and so ℓ_a, B commute

•
$$\ell_a \circ k(z) = \frac{-a}{z}$$
 and $k \circ \ell_a(z) = \frac{-1}{(az)} \neq \ell_a \circ k(z)$

and so G_{ℓ} is not a commutative group.