Question

Let E be the ellipse in \mathbf{C} given by the equation

$$
E=\left\{z \in \mathbf{C} \left\lvert\, \frac{3}{4}(\operatorname{Re}(z))^{2}+\frac{5}{4}(\operatorname{Im}(z))^{2}=1\right.\right\} .
$$

Determine at least three non-trivial elements m of the general Möbius group Möb satisfying $m(E)=E$.

Answer

First, note that E is symmetric with respect to both the x-axis and the y-axis (\mathbf{R}-axis and imaginary axis) and so two elements of Möb taking E to E are $C(z)=\bar{z}$ (reflection in \mathbf{R}) and $B(z)=-\bar{z}$ (reflection in the imaginary axis). The comparison of B and C is rotation by π fixing $0, \infty$ (i.e. $m(z)=-\bar{z}$), which also takes E to E. So, there is a $\mathbf{Z}_{\mathbf{2}} \oplus \mathbf{Z}_{\mathbf{2}}$ subgroup of Möb generated by B, C contained in $G_{E}=\{m \in \operatorname{Mddotob} \mid \mathrm{m}(\mathrm{E})=\mathrm{E}\}$.
[no loxodromic takes E to E : if m is loxodromic and $m(E)=E$, then the fixed points of m are on E. This is probably most easily seen by conjugating so that the fixed points of m are 0 and ∞ and then noting that a curve invariant under such a loxodromic is either a line through 0 or a curve that spirals into 0 , and the ellipse gets taken to a curve that does neither.
no parabolic takes E to E; again, if m is parabolic and $m(E)=E$, then the fixed point of m is on E. Conjugating so that $m(z)=z+1$, note that the curves invariant under m are precisely the horizontal lines and other periodic curves, and the ellipse is neither.
no infinite order elliptic takes E to E : if it did, then E would contain a dense subset of a circle, which would then force E to be a circle, which it isn't.]

