Exam Question

Topic: TripleIntegral

Let C denote a solid cylinder of height 2 and radius 1 whose axis of symmetry is the z-axis. The density of this cylinder at a point P is equal to the product of the distance of P from the bottom of the cylinder and the distance of P from the z-axis. Find the total mass of the cylinder C by evaluating an appropriate triple integral.

Solution

In cylindrical polar coordinates the density is $r z$. So the mass is given by

$$
\int_{\phi=0}^{\pi} d \phi \int_{z=0}^{2} d z \int_{r=0}^{1} r z \cdot r d r=2 \pi \int_{0}^{2} z d z \int_{0}^{1} r^{2} d r=2 \pi \times 2 \times \frac{1}{3}=\frac{4 \pi}{3}
$$

