Question

A simple random walk can occupy states $(0,1,2, \cdots)$. For states $j \geq 2$ there is a probability p of making a step of +1 , and q of making a step of -1 , where $p+q=1$ and $p q \neq 0$. State 0 is an absorbing barrier. State 1 is partially reflecting in the sense of the following conditional probabilities:

$$
\begin{aligned}
& P\left(X_{n+1}=2 \mid X_{n}=1\right)=p \\
& P\left(X_{n+1}=1 \mid X_{n}=1\right)=q k \\
& P\left(X_{n+1}=0 \mid X_{n}=1\right)=p(1-k)
\end{aligned}
$$

where $0<k<1$.

Let $f(n, j)$ denote the probability of absorption at step n, starting in state j. Let $F_{j}(s)$ denote the generating function for the sequence of probabilities $f(n, j)(n=0,1,2, \cdots)$.
Explain why $F_{j}(1)$ gives the probability of eventual absorption, starting in state j.

Write down a difference equation for $f(n, j)$, by arguing conditionally on the result of the first step, for $j=1$ and for $j>1$.

Hence obtain a difference equation for $F_{j}(1)$, the probability of eventual absorption, for $j=1$ and for $j>1$. Find the general solution of the difference equation for $j>1$. Show by considering large j, that for $q>p$ and for $q=p, F_{j}(1)$ is constant, a nd further that $F_{j}(1)=1$.

For $q>p$, using the assumption that $F_{j}(1) \rightarrow 0$ as $j \rightarrow \infty$, show that

$$
F_{j}(1)=\frac{p(1-k)}{p-k q}\left(\frac{q}{p}\right)^{j} \text { orj }>0
$$

Answer

$F_{j}(s)=\sum_{n=0}^{\infty} f(n, j) s^{n}$
$F_{j}(1)=\sum_{n=0}^{\infty} f(n, j)$
which is the probability of absorption, either at step 0 , or step 1 , or step 2 , \cdots, i.e. the probability of eventual absorption.
Now arguing conditionally on the result of the first step, for $j=1$, gives
$f(n, 1)=p f(n-1,2)+q(1-k) f(n-1,0)+q k f(n-1,1) \quad(A)$
For $j>1$ we obtain
$f(n, j)=p f(n-1, j+1)+q f(n-1, j-1) \quad(B)$
Now $\quad f(0,1)=0$
so

$$
\begin{aligned}
f(n, 0) & = \begin{cases}1 & n=0 \\
0 & \text { otherwise } \\
1 & n=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Summing (A) for $n=1,2, \cdots$ gives
$F(1)=p \sum_{n=1}^{\infty} f(n-1,2)+q(1-k)+q k \sum_{n=1}^{\infty} f(n-1,1)$
$F_{1}(1)=p F_{2}(1)+q(1-k)+q k F_{1}(1) \quad(C)$
For $j>1, f(0, j)=0$, so summing (B) for $n=1,2, \cdots$ gives

$$
F_{j}(1)=p F_{j+1}(1)+q F_{j-1}(1)
$$

Now let $F_{j}(1)=\lambda^{j} \quad j \geq 1$
then $p \lambda^{2}-\lambda+q=0$, so $(p \lambda-q)(\lambda-1)=0$.
For $\quad p \neq q \quad F_{j}(1)=A\left(\frac{q}{p}\right)^{j}+B$

$$
p=q \quad F_{j}(1)=A j+B
$$

Now if $q>p$ or $q=p, A \neq C \rightarrow F_{j}(1)$ is outside $[0,1]$ for large j, and so couldn't represent a probability. Hence $A=C$ and so for $q \geq p, F_{j}(1)=B$. Using (C) now gives

$$
\begin{aligned}
& B=p B+q(1-k)+q k B \\
& B(1-p-q k)=q-q k \\
& B=1(\text { as } p+q=1 \text { and } 0<k<1) \\
& \text { Hence } F_{j}(1)=1
\end{aligned}
$$

Now if $q<p,\left(\frac{q}{p}\right)^{j} \rightarrow 0$ as $j \rightarrow \infty$ so assuming $F_{j}(1) \rightarrow 0$ this gives $B=C$.
Hence $F_{j}(1)=A\left(\frac{q}{p}\right)^{j}$ and using (C) again gives

$$
A\left(\frac{q}{p}\right)=p A\left(\frac{q}{p}\right)^{2}+q(1-k)+q k A\left(\frac{q}{p}\right)
$$

$$
A\left(\frac{q}{p}-\frac{q^{2}}{p}-\frac{q \cdot 2 \cdot k}{p}\right)=q(1-k)
$$

so $A=\frac{p(1-k)}{p-q k}$ using $P+q=1$.
Thus $F_{j}(1)=\frac{p(1-k)}{p-k q}\left(\frac{q}{p}\right)^{j}$ in this case.

