Question

State Lebesgue's theorem on dominated convergence for a sequence of functions $\{f_n\}$.

The functions f(x,t) has the following properties:

- i) f(x,t) is an integrable function of x, for each t;
- ii) there is a function h(x) such that for each x, $\lim_{t\to a} f(x,t) = h(x)$, where a is a fixed real number;
- iii) there is an integrable function g(x) with the property that, for each x, there exists $\delta > 0$ such that for $|t a| < \delta$,

$$|f(x,t)| \le g(x).$$

Use Lebesgue's theorem to show that

$$\lim_{t \to a} \int f(x,t)dx = \int h(x)dx.$$

Suppose that $\phi(x,t)$ is an integrable function of x, for each t, and that the partial derivative $\frac{\partial \phi}{\partial t}$ exists for all x,t.

Suppose also that there is an integrable function $\psi(x) > 0$ such that

$$\left| \frac{\partial \phi}{\partial t} \right| \le \psi(x)$$

for all x. Prove that

$$\frac{d}{dt}\int\phi(x,t)dx=\int\frac{\partial\phi}{\partial t}dx.$$
 If $I(\alpha)=\int_0^\infty x^\alpha e^{-x}dx, \qquad \alpha>0,$ show that

$$I(\alpha) = I'(\alpha + 1) - (\alpha + 1)I'(\alpha).$$

Answer

Lebesgue's theorem on dominated convergence states that if $\{f_n\}$ is a sequence of measurable functions with the property that $|f_n(x)| \leq g(x)$ for all n, x where g(x) is integrable, and if $f_n(x) \to f(x)$ as $n \to \infty$ for all x, then f is integrable, and $\lim_{n\to\infty}\int f_n(x)dx=\int f(x)dx$.

Let $\{t_n(x)\}\$ be an arbitrary sequence of real numbers satisfying $|t_n-a|<\delta(x)$ and converging to a.

Let
$$f_n(x) = f(x, t_n(x))$$

Then
$$|f_n(x)| \leq g(x)$$
 for all x .

Thus
$$\lim_{n\to\infty} \int f(x,t_n)dx = \int h(x)dx$$
 by Lebesgue's theorem.

Hence
$$\lim_{t\to\infty} \int f(x,t)dx = \int h(x)dx$$

Now let
$$\Phi(t) = \int \phi(x,t) dx$$

Consider
$$\frac{\Phi(t+h) - \Phi(t)}{h}$$

$$= \int \frac{\phi(x,t+h) - \phi(x,t)}{h} dx = \int X(x,h) dx$$

Now
$$X(x,h) \to \left. \frac{\partial \phi}{\partial t} \right|_x$$
 as $h \to 0$

Thus there exists δ such that for all h satisfying $0 < |h| < \delta$,

$$\left| X(x,h) - \frac{\partial \phi}{\partial t} \right|_x < \psi(x)$$

Thus for all h satisfying $0 < |h| < \delta$, we have

$$|X(x,h)| \le \left| \frac{\partial \phi}{\partial t} \right|_{x} + \psi(x) \le 2\psi(x)$$

 $|X(x,h)| \le \left|\frac{\partial \phi}{\partial t}\right|_x + \psi(x) \le 2\psi(x)$ Since ψ is integrable 2ψ is integrable and so the above result shows that

$$\lim_{h \to 0} \int X(x,h) dx = \int \frac{\partial \phi}{\partial t} dx$$

i.e.
$$\frac{d}{dt} \int \phi(x,t) dx = \int \frac{\partial \phi}{\partial t} dx$$

 $I(\alpha) = \int_0^\infty x^\alpha e^{-x} dx$

$$I(\alpha) = \int_0^\infty x^{\alpha} e^{-x} dx$$

$$\frac{\partial}{\partial \alpha}(x^{\alpha}e^{-x}) = x^{\alpha}(\log x)e^{-x}$$

$$\frac{\partial \alpha}{\partial x} = x^{\alpha} (\log x) e^{-\frac{1}{2}x} e^{-\frac{1}{2}x} < e^{-\frac{1}{2}x} \qquad \text{for } x \ge x_0$$

since
$$x^{\alpha}(\log x)e^{-\frac{1}{2}x} \to 0$$
 as $x \to \infty$

also
$$x^{\alpha}(\log x)e^{-\frac{1}{2}x} \to 0$$
 as $x \to 0$ and so

$$|x^{\alpha}(\log x)e^{-\frac{1}{2}x}| < 1 \text{ if } 0 < x \le x_1.$$
 Thus if
$$\psi(x) = \begin{cases} 1 & 0 < x \le x_1 \\ |x^{\alpha}(\log x)e^{-\frac{1}{2}x}| & x_1 < x < x_2 \\ e^{-\frac{1}{2}x} & x \ge x_2 \end{cases}$$

$$\left|\frac{\partial}{\partial \alpha}(x^{\alpha}e^{-x})\right| \le \psi(x) \text{ and } \psi \text{ is integrable,}$$
 thus
$$I'(\alpha) = \int_0^{\infty} \frac{\partial}{\partial \alpha}(x^{\alpha}e^{-x})$$

$$(\alpha + 1)I'(\alpha) = \int_0^{\infty} (\alpha + 1)x^{\alpha}(\log x)e^{-x}dx$$

$$= \left[x^{\alpha+1}(\log x)e^{-x}\right]_0^{\infty} - \int_0^{\infty} x^{\alpha+1}\left[e^{-x}\frac{1}{x} - (\log x)e^{-x}\right]dx$$

$$= \int_0^{\infty} x^{\alpha+1}(\log x)e^{-x}dx - \int_0^{\infty} x^{\alpha}e^{-x}dx$$

$$= I'(\alpha + 1) - I(\alpha)$$
 Hence
$$I(\alpha) = I'(\alpha + 1) - (\alpha + 1)I'(\alpha)$$