Question

Define what is meant by a measurable set, and what is meant by a measurable function.

Show that if $\{A_n\}$ is a sequence of measurable sets with the properties $A_{n+1} \subseteq A_n$ for $n=1,2,\cdots$ and

$$m(A_1) < \infty$$

then

$$m\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} m(A_n).$$

Suppose f is a measurable function defined on [0,1]. Define the function g(x) by

$$g(x) = m(\{y : f(y) \ge x\}).$$

Show that for each real number a,

$$\lim_{x \to a^{-}} g(x) = g(a).$$

Is it true

$$\lim_{x \to a^+} g(x) = g(a)?$$

Justify your assertion.

Answer

A set E is said to be measurable if for each set S, we have

$$m^*(S) = m^*(S - E) + m^*(S \cap E)$$

A function F is said to be measurable if for each number c, the set

$$\{x|f(x) \ge c\}$$

is measurable.

We first prove that if A_1 , A_2 are all measurable ad $A-1\subseteq A_2\subseteq \cdots$ then

$$m\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} m(A_n)$$

$$\bigcup_{n=1}^{\infty} A_n = A_1 \cup (A_2 - A_1) \cup (A_3 - A_2) \cup \cdots$$

$$= A_1 \cup \bigcup_{n=1}^{\infty} (A_{n+1} - A_n)$$

So, by additivity,

$$m\left(\bigcup_{n=1}^{\infty}\right) = m(A_i) + \sum_{n=1}^{\infty} m(A_{n+1} - A_n)$$

$$= \lim_{n \to \infty} [m(A_1) + (A_2 - A_n) + \dots + (A_{n+1} - A_n)]$$

$$= \lim_{n \to \infty} m(A_n)$$

Now let $B_i = A_1 - A_i$

$$\phi = B_1 \subseteq B_2 \subseteq \cdots \text{ so } m\left(\bigcup_{i=1}^{\infty} B_i\right) = \lim_{n \to \infty} m(B_n)$$

Thus
$$m\left(A_1 - \bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} m(A_1 - A_n)$$

Therefore
$$m(A_1) - m\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} (m(A-1) - m(A-n))$$
using $m(A_i) < \infty$

Therefore
$$m\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} m(A_n)$$

Let
$$g(x) = m(\{y|f(y) \ge x\})$$

Let a_1, a_2, \ldots be an arbitary sequence with the properties that $a_1 \leq a_2 \leq \ldots$ and $a_n \to a$

Let
$$A_n = \{y | f(y) \ge a_n\}$$

Let $A = \{y | f(y) \ge a\}$

Let
$$A = \{y | f(y) \ge a\}$$

We first prove that
$$A = \bigcap_{n=1}^{\infty} A_n$$

Suppose $y \in A$ then $f(y) \geq a$ and so fo all $n, f(y) \geq a_n$. Hence $y \in \bigcap_{n=1}^{\infty} A_n$

conversley if $y \in \bigcap_{n=1}^{\infty} A_n$ then for all $n, f(y) \ge a_n$ and so $f(y) \ge a_{n+1} \ge a_n$ and so $y \in A_n$.

Also, since $A_1 \subseteq [0,1]$, we have $m(A_1) \le 1 \le \infty$.

Hence
$$m\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} m(A_n)$$

or
$$g(a) = \lim_{n \to \infty} g(a_n)$$

But a_n is an arbitary increasing sequence $\to a$ and so $g(a) = \lim_{x \to a^-} g(x)$

It is not true that $\lim_{x\to a+} g(x) = g(a)$ as the following example shows:

Let f(x) = 1 for all $x \in [0, 1]$

$$g(1) = m(\{y|f(y) \ge 1\}) = 1$$

If
$$x > 1$$
 $g(x) = m(\{y | f(y) \ge x > 1\}) = 0$

So
$$\lim_{x \to 1+} g(x) = 0 \neq g(1)$$