Question

Define Lebesgue outer measure $m *$ in 3-dimensional Euclidean space \mathbf{R}^{3}. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the transformation defined by

$$
(x, y, z) \rightarrow(h x, k y, l z)
$$

where h, k and l are nonzero real numbers. If E is a subset of \mathbf{R}^{3}, express $m^{*}(T(E))$ in terms of $m^{*}(E)$, proving your relationship from your dimension of m^{*}. Show also that if E is measurable then $T(E)$ is measurable.
Find the Lebesgue measure in \mathbf{R}^{3} of the ellipsoid

$$
\left\{(x, y, z): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1\right\}
$$

[The Lebesgue measure of the unit ball in \mathbf{R}^{3} may be assumed.]

Answer

If E is a subset of \mathbf{R}^{3}, we define Lebesgue outer measure m^{*} by

$$
m^{*}(E)=\inf _{\left\{R_{i}\right\}} \sum_{i=1}^{\infty}\left|R_{i}\right|
$$

Where $\left\{R_{i}\right\}$ denotes a system of rectangles of the from $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid a_{i}<x_{1}<\right.$ $\left.b_{i} i=1,2,3\right\}$ with the property that $E \subseteq \bigcup_{i=1}^{\infty} R_{i}$, and where

$$
\left|R_{i}\right|=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)\left(b_{3}-a_{3}\right)
$$

Now if R_{i} is the rectangle defined by

$$
\begin{aligned}
& a_{1}<x_{2}<b_{1} \\
& a_{2}<x_{2}<b_{2} \\
& a_{3}<x_{3}<b_{3}
\end{aligned}
$$

Then $T\left(R_{i}\right)$ is a rectangle defined by

$$
A\left\{\begin{array}{cl}
h a_{1}<x_{2}^{\prime}<h b_{1} & \left(\text { or } h b_{1}<x_{1}^{\prime}<h a_{1} \text { if } h<0\right) \\
k a_{2}<x_{2}^{\prime}<k b_{2} & \left(\text { or } k b_{1}<x_{1}^{\prime}<k a_{1} \text { if } k<0\right) \\
l a_{3}<x_{3}^{\prime}<l b_{3} & \left(\text { or } l b_{1}<x_{1}^{\prime}<l a_{1} \text { if } l<0\right)
\end{array}\right.
$$

Now if $\epsilon>0$, we can find a system $\left\{R_{i}\right\}$, such that

$$
\sum_{i=1}^{\infty}\left|R_{i}\right| \leq m^{*}(E)+\epsilon
$$

by the defination $T\left(R_{i}\right)$ is a rectangle, and since $\bigcup_{i=1}^{\infty} R_{i} \supseteq E$, we have $\bigcup_{i=1}^{\infty} T\left(R_{i}\right) \supseteq T(E)$, and so $m^{*}(T(E)) \leq \sum_{i=1}^{\infty}\left|T\left(R_{i}\right)\right|$
$\stackrel{i=1}{\text { Now by equation } A \text {, we have }}$

$$
\begin{aligned}
\left|T\left(R_{i}\right)\right| & =|h|\left(b_{1}-a_{1}\right)|k|\left(b_{2}-a_{2}\right)|l|\left(b_{3}-a_{3}\right) \\
& =|h k l|\left|r_{i}\right|
\end{aligned}
$$

Hence $m^{*}(T(E)) \leq|h k l| \sum_{i=1}^{\infty}\left|R_{i}\right| \leq|h k l|\left(m^{*}(E)+\epsilon\right)$
Thus

$$
\begin{equation*}
m^{*}(T(E)) \leq|h k l| m^{*}(E) \tag{1}
\end{equation*}
$$

Now consideration of the inverse transformation T^{-1} applied to the set $T(E)$ shows similarly that
$m^{*}(E)=M^{*}\left(T^{-1}(T(E))\right) \leq \frac{1}{|h k l|} m^{*}(T(E))$
i.e.

$$
\begin{equation*}
m^{*}(T(E)) \geq|h k l| m^{*}(E) \tag{2}
\end{equation*}
$$

Thus by (1) and (2),

$$
m^{*}(T(E))=|h k l| m^{*}(E)
$$

If E is measurable, then for any set $A, m^{*}(A)=M^{*}(A-E)+m^{*}(A \cap E)$
Now let m B be an arbitrary subset of \mathbf{R}^{3}. Taking $A=T^{-1}(B)$

$$
\begin{aligned}
m^{*}\left(T^{-1}(B)\right) & =m^{*}\left(T^{-1}(B)-E\right)+m^{*}\left(T^{-1}(B) \cap E\right) \\
& =m^{*}\left(T^{-1}(B-T(E))\right)+m^{*}\left(T^{-1}(A \cap T(E))\right)
\end{aligned}
$$

Thus we have

$$
\frac{1}{|h k l|} m^{*}(B)=\frac{1}{|h k l|} m^{*}(B-T(E))+\frac{1}{|h k l|} m^{*}(B \cap T(E))
$$

Hence, cancelling $\frac{1}{|h k l|}, T(E)$ is measurable.
Let $E=\left\{(x, y, z) \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1\right.\right\}$
Let $S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$
Let $T:(x, y, z) \rightarrow(|a| x,|b| y,|c| z)$
Then $T(S)=E$
Hence $m^{*}(E)=|a b c| m^{*}(S)$
S and E are closed and so measurable. S so the unit sphere, so $m(S)=\frac{4}{3} \pi$ Hence $m(E)=\frac{4}{3} \pi|a b c|$

