Question

A simple random random walk has the set $\{0,1,2, c d o t s, a-1,1\}$ as possible states. States 0 and a are reflecting barriers from which reflection is certain, i.e., if the random walk is in state 0 or a at step n the it will be in state 1 or state $a-1$ respectively at step $n+1$. For all other states, transitions of $+1,-1,0$ take place with non-zero probabilities $p, q, 1-p-q$ respectively.

Let $p_{j, k}^{(n)}$ denote the probability that the random walk is in state k at step n, having started in state j. Obtain difference equations relating these probabilities, for the cases $k=0,1, a, a-1$ and $1<k<a-1$.

Assuming that there is a long-term equilibrium probability distribution $\left(\pi_{k}\right)$, where

$$
\pi_{k}=\lim _{n \rightarrow \infty} p_{j, k}^{(n)} \text { for } 0 \leq \mathrm{j} \leq \mathrm{a},
$$

use the difference equations derived to obtain difference equations of π_{k}. Solve these equations recursively, or other-wise, to obtain explicit formulae for π_{k} in terms of p, q and a.

Answer

$$
\begin{aligned}
p_{j, 0}^{(n)} & =q \cdot p_{j, 1}^{(n-1)} \\
p_{j, 1}^{(n)} & =p_{j, 0}^{(n-1)}+q \cdot p_{j, 2}^{(n-1)}+(1-p-q) p_{j, 1}^{(n-1)} \\
p_{j, k}^{(n)} & =p \cdot p_{j, k-1}^{(n-1)}+q \cdot p_{j, k+1}^{(n-1)}+(1-p-q) p_{j, k}^{(n-1)} \quad 1<k<a-1 \\
p_{j, a-1}^{(n)} & =p \cdot p_{j, a-2}^{(n-1)}+p_{j, a}^{(n-1)}+(1-p-q) p_{j, a-1}^{(n-1)} \\
p_{j, a}^{(n)} & =p \cdot p_{j, a}^{(n-1)}
\end{aligned}
$$

Assuming the existence of an equilibrium distribution, taking limits in the above equations gives:

$$
\begin{align*}
& \pi_{0}=q \pi_{1} \tag{1}\\
& \pi_{1}=\pi_{0}+q \pi_{2}+(1-p-q) \pi_{1} \tag{2}\\
& p_{k}=p \pi_{k-1}+q \pi_{k+1}+(1-p-q) \pi_{k} \tag{3}\\
& \pi_{a-1}=p \pi_{a-2}+\pi_{a}+(1-p-q) \pi_{a-1} \tag{4}\\
& \pi_{a}=p \pi_{a-1} \tag{5}
\end{align*}
$$

Equation (1) gives $\pi_{1}=\frac{1}{q} \pi_{0}$.
(2) gives

$$
\pi_{2}=\frac{(p+q)}{q} \pi_{1}-\frac{1}{q} \pi_{0}=\frac{(p+q)}{q} \cdot \frac{1}{q} \pi_{0}-\frac{1}{q} \pi_{0}=\frac{1}{q}\left(\frac{p}{q}\right) \pi_{0}
$$

(3) gives
$\pi_{3}=\frac{(p+q)}{q} \pi_{2}-\frac{p}{q} \pi_{1}=\frac{(p+q)}{q} \cdot \frac{1}{q} \cdot \frac{p}{q} \pi_{0}-\frac{p}{q} \cdot \frac{1}{q} \pi_{0}=\frac{1}{q}\left(\frac{p}{q}\right)^{2} \pi_{0}$
Assume $\pi_{i}=\frac{1}{q}\left(\frac{p}{q}\right)^{i-1}$ for $1 \leq i \leq k$.
(3) gives
$\pi_{k+1}=\frac{p+q}{p} \pi_{k}-\frac{p}{q} \pi_{k-1}=\frac{p+q}{q} \cdot \frac{1}{q}\left(\frac{p}{q}\right)^{i-1} \pi_{0}-\frac{p}{q} \frac{1}{q}\left(\frac{p}{q}\right)^{i-2} \pi_{0}=\frac{1}{q}\left(\frac{p}{q}\right)^{i} \pi_{0}$
so $\pi_{k}=\frac{1}{q}\left(\frac{p}{q}\right)^{k-1} \pi_{0}$ for $1 \leq k \leq a-1$.
(5) then gives $\pi_{a}=p \pi_{a-1}=\left(\frac{p}{q}\right)^{a-1} \pi_{0}$
(This is consistent with (4) as expected)
Now $\sum_{k=0}^{a} \pi_{k}=1$ and so

$$
\pi_{0}\left(1+\frac{1}{q}\left(1+\frac{p}{q}+\cdots+\left(\frac{p}{q}\right)^{a-2}\right)+\left(\frac{p}{q}\right)^{a-1}\right)=1
$$

i.e. $\pi_{0}=\left(1+\frac{1-\left(\frac{p}{q}\right)^{a-1}}{q-p}+\left(\frac{p}{q}\right)^{a-1}\right)^{-1}$
$p \neq q$
which gives the formulae 3 for π_{k}, as these are in terms of π_{0} above.

