Question

A gambler with initial capital z plays against an opponent with initial capital $(a-z)$, where a and z are integers with $0^{6} z \leq a$. At each play the gambler wins 1 with probability p and loses 1 wit probability q. A draw occurs with probability $r<1$, where $p+q+r-1$, and in the case of a draw both players retain their 1 stake.

Let q_{z} denote the probability that the gambler will eventually be ruined. Write down a difference equation for q_{z} and solve it to obtain an explicit formula for q_{z} in the case $p \neq q$.

The two players initially have 10 between them. If $p=0.4$ and $q=0.3$ how much of the 10 must the gambler have in order to have a better than even chance of not being ruined?

With these values of p and q, how much initial capital does the gambler need in order to have a better than even chance of not being ruined when playing against an infinitely rich opponent?

Answer

$$
\begin{aligned}
\mathrm{P}(\text { ruin })= & \mathrm{P}(\text { ruin and win 1st bet }) \\
& +\mathrm{P}(\text { ruin and lose 1st bet }) \\
& +\mathrm{P}(\text { ruin and draw 1st bet }) \\
= & \mathrm{P}(\text { ruin }- \text { wins 1st bet }) \mathrm{P}(\text { win } 1 \text { st bet }) \\
& +\mathrm{P}(\text { ruin }- \text { loses 1st bet }) \mathrm{P}(\text { lose } 1 \text { st bet }) \\
& +\mathrm{P}(\text { ruin }- \text { draws } 1 \text { st bet }) \mathrm{P}(\text { draw } 1 \text { st bet })
\end{aligned}
$$

so

$$
\begin{aligned}
q_{z} & =q_{z+1} \cdot p+q_{z-1} \cdot q+q_{z} \cdot r \\
q_{z}(1-r) & =p \cdot q_{z+1}+q \cdot q_{z-1} \\
q_{z} & =\frac{p}{p+q} q_{z+1}+\frac{q}{p+q} q_{z-1} \quad(r \neq 1)
\end{aligned}
$$

with boundary conditions $q_{0}=1 ; q_{a}=0$
Substituting $q_{z}=\lambda^{z}$ gives

$$
\lambda^{z}=\frac{p}{p+q} \lambda^{z+1}+\frac{q}{p+q} \lambda^{z-1}
$$

$$
\begin{aligned}
& \text { i.e. } \frac{\mathrm{p}}{\mathrm{p}+\mathrm{q}} \lambda^{2}-\lambda+\frac{\mathrm{q}}{\mathrm{p}+\mathrm{q}}=0 \\
& (\lambda-1)\left(\frac{p}{p+q} \lambda-\frac{q}{p+q}\right)=0
\end{aligned}
$$

so $\lambda=1$ or $\lambda=\frac{p}{q} \neq 1$ when $p \neq q$.
So the general solution is

$$
q_{z}=A+B\left(\frac{q}{p}\right)^{z}
$$

The boundary conditions give

$$
\begin{aligned}
& 1=A+B \\
& 0=A+B\left(\frac{q}{p}\right)^{a}
\end{aligned}
$$

so $1=B\left(1-\left(\frac{q}{p}\right)^{a}\right)$
Thus $B=\frac{1}{1-\left(\frac{q}{p}\right)^{a}}$ and $A=1-B=\frac{-\left(\frac{q}{p}\right)^{a}}{1-\left(\frac{q}{p}\right)^{a}}$
Hence $q_{z}=\frac{\left(\frac{q}{p}\right)^{z}-\left(\frac{q}{p}\right)^{a}}{1-\left(\frac{q}{p}\right)^{a}}$
Now with $p=0.4, q=0.3$, and $a=10$ we have

$$
q_{z}=\frac{\left(\frac{3}{4}\right)^{z}-\left(\frac{3}{4}\right)^{10}}{1-\left(\frac{3}{4}\right)^{10}}
$$

so $q_{z}<\frac{1}{2}$ if and only if $\left(\frac{3}{4}\right)^{z}-\left(\frac{3}{4}\right)^{10}<\frac{1}{z}\left(1-\left(\frac{3}{4}\right)^{10}\right)$
i.e. $2\left(\frac{3}{4}\right)^{z}<1+\left(\frac{3}{4}\right)^{10}$

$$
z>\frac{\ln \left(1+\left(\frac{3}{4}\right)^{10}\right)-\ln 2}{\ln \left(\frac{3}{4}\right)}=2.219 \ldots
$$

Playing against an infinitely rich opponent is analysed by letting $a \rightarrow \infty$, giving the probability of ruin as $\left(\frac{3}{4}\right)^{z}$.
Now $\left(\frac{3}{4}\right)^{z}<\frac{1}{2}$ if and only if $z>\frac{\ln \left(\frac{1}{2}\right)}{\ln \left(\frac{3}{4}\right)}=2.41 \ldots$
so in fact with 3 the gambler has a better than even chance of not being ruined against an infinitely rich opponent.

