Exam Question

Topic: SurfaceIntegral

Let S be part of the curved surface of a cylinder, specified by

$$
y^{2}+z^{2}=1, z>0,0 \leq x \leq 1
$$

Evaluate the surface integral

$$
\iint_{S}\left(\sin (x y z) \mathbf{i}+z \mathbf{j}+y^{2} \mathbf{k}\right) \cdot \mathbf{d} \mathbf{S}
$$

Solution

The equation of the cylinder is $F(x, y, z)=y^{2}+z^{2}-1=0$.
Differentiating gives $\frac{\partial F}{\partial x}=0 ; \quad \frac{\partial F}{\partial y}=2 y ; \quad \frac{\partial F}{\partial z}=2 z$.
So $\mathbf{d S}=\frac{2 y \mathbf{j}+2 z \mathbf{k}}{|2 z|} d x d y=\left(\frac{y}{z} \mathbf{j}+\mathbf{k}\right) d x d y$ as $z>0$.
So $\left(\sin (x y z) \mathbf{i}+z \mathbf{j}+y^{2} \mathbf{k}\right) \cdot \mathbf{d S}=\left(y+y^{2}\right) d x d y$.
The surface integral then becomes

$$
\int_{0}^{1} d x \int_{-1}^{1}\left(y+y^{2}\right) d y=\frac{2}{3} .
$$

