Exam Question

Topic: SurfaceIntegral The dean's trophy presented to the best lecturer of the year is in the shape of the upper half of a cylinder, specified by

$$
y^{2}+z^{2}=1, z \geq 0,0 \leq x \leq 1
$$

The curved part of the surface is to be covered with an iridescent foil made of a mixture of precious metals, where the composition varies so as to achieve a colour change over the surface. The density at a point (x, y, z) on the surface is given by $\left(1+2 x^{2}\right)$.
Calculate the total mass of foil by evaluating an appropriate surface integral.

Solution

The equation of the surface can be rewritten as $z=\sqrt{1-y^{2}}$, so

$$
\frac{\partial z}{\partial y}=\frac{-y}{\sqrt{1-y^{2}}} ; \frac{\partial z}{\partial x}=0
$$

Therefore we have

$$
d S=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}=\sqrt{1+\frac{y^{2}}{1-y^{2}}}=\frac{1}{\sqrt{1-y^{2}}}
$$

The mass is therefore given by

$$
\begin{aligned}
M & =\int_{0}^{1} d x \int_{-1}^{1} \frac{1+2 x^{2}}{\sqrt{1-y^{2}}} d y=\int_{0}^{1}\left(1+2 x^{2}\right) d x \int_{-1}^{1} \frac{1}{\sqrt{1-y^{2}}} d y \\
& =\left[x+\frac{2}{3} x^{3}\right]_{0}^{1}\left[\sin ^{-1} y\right]_{-1}^{1}=\frac{5 \pi}{3}
\end{aligned}
$$

