
Exam Question

Topic: SurfaceIntegral The dean’s trophy presented to the best lecturer
of the year is in the shape of the upper half of a cylinder, specified by

y2 + z2 = 1, z ≥ 0, 0 ≤ x ≤ 1.

The curved part of the surface is to be covered with an iridescent foil made of
a mixture of precious metals, where the composition varies so as to achieve a
colour change over the surface. The density at a point (x, y, z) on the surface
is given by (1 + 2x2).
Calculate the total mass of foil by evaluating an appropriate surface integral.

Solution
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The mass is therefore given by
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