Question

(a) Show that all the roots of the equation

$$
(1+z)^{2 n+1}=(1-z)^{2 n+1}
$$

are given by

$$
\pm i \tan \left(\frac{k \pi}{2 n+1}\right) \quad k=0,1,2, \cdots, n
$$

(b) Let $z=x+i y$ and $w=u+i v$. If $w=z^{2}+2 z$ show that the line $v=2$ is the image of a rectangular hyperbola in the z-plane. Sketch this hyperbola.
(c) if $w=a z+b$, where $a=3(1-i)$ and $b=2+3 i$, then describe what happens to any figure in the z-plane under this transformation.

Answer

(a)

$$
\begin{aligned}
(1+x)^{2 n+1} & =(1-x)^{2 n+1} \\
\text { So } \frac{1+x}{1-x} & ==e^{\frac{2 \pi i}{2 n+1} k} \\
x & =\frac{e^{\frac{2 \pi i}{2 n+1} k}-1}{e^{\frac{2 n i}{2 n+1} k}+1} \\
& =\frac{e^{\frac{\pi k}{2 n+1}}-e^{-\frac{\pi i k}{2 n+1}}}{e^{\frac{\pi k}{2 n+1}}+e^{-\frac{\pi i k}{2 n+1}}} \\
& =i \tan \frac{\pi k}{2 n+1} \quad k=-n, \cdots, n \\
& = \pm i \tan \frac{\pi k}{2 n+1} \quad k=0, \cdots, n
\end{aligned}
$$

(b) $z=x+i y$
$w=u+i v$
Therefore as $w=z^{2}+2 z, u+i v=x^{2}-y^{2}+2 i x y+2(x+i y)$
S $v=2 x y+2 x$
Thus $v=2$ if and only if $2 x y+2 x=2$ and $y(x+1)=1$
This is a rectangular hyperbola.

(c)

$$
\begin{aligned}
w & =3(1-i) z+(2+3 i) \\
& =3 \sqrt{2} e^{-\frac{i \pi}{4}} z+(2+3 i)
\end{aligned}
$$

So any figure is rotated clockwise through 45°, magnified by $3 \sqrt{3}$ and the translated by $(2+3 i)$

