Question

Calculate to 4 decimal places of accuracy

$$
J=\int_{0}^{\frac{3}{2}} \frac{e^{-x} \cos x}{1+x} d x
$$

by using
(i) the trapezium rule with 5 ordinates;
(ii) Simpson's rule with 5 ordinates.
(iii) Compare your answers with the exact result $J=0.439822747 \ldots$, calculating the percentage error in each case.

Answer

$$
J=\int_{0}^{\frac{3}{2}} \frac{e^{-x} \cos x}{1+x} d x
$$

(i) Trapezium rule with 5 ordinates:

$$
J \approx \frac{d}{2}\left(y_{1}+2 y_{2}+2 y_{3}+2 y_{4}+y_{5}\right)
$$

where $d=\frac{\frac{3}{2}}{5-1}=\frac{3}{8}=0.375$

$$
\begin{array}{ll}
x_{1}=0 & x_{4}=\frac{9}{8}=1.125 \\
x_{2}=\frac{3}{8}=0.375 & x_{5}=\frac{3}{2}=1.5 \\
x_{3}=\frac{3}{4}=0.75 &
\end{array}
$$

$$
y_{i}=f\left(x_{i}\right) ; \quad f(x)=\frac{e^{-x} \cos x}{(1+x)}
$$

x	0	0.375	0.75	1.125	1.5
y	1.00000	0.46511	0.19750	0.06587	0.00631

$$
\begin{aligned}
J \approx & \frac{0.375}{2}(1.00000 \\
& +2 \times(0.46511+0.19750+0.06587)+0.00631) \\
= & \frac{0.375}{2}(1.00631+1.45697)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{0.375}{2} \times 2.46328 \\
& =0.461866 \\
& =\underline{0.4619}
\end{aligned}
$$

(ii) Simpson with 5 ordinates
$J \approx \frac{h}{3}\left(y_{1}+4 y_{2}+2 y_{3}+4 y_{4}+y_{5}\right)$
4 equal segments $\Rightarrow h=0.375$ as above.
So we have the same y_{i} as above.
Hence

$$
\begin{aligned}
J \approx & \frac{0.375}{2}(1.00000+4 \times(0.46511+0.06587) \\
& +2 \times 0.19750+0.00631) \\
= & 0.125(1.00631+2.12394+0.39500) \\
= & 0.440656 \\
= & \underline{0.4407}
\end{aligned}
$$

(iii) (i) $\Rightarrow\left|\frac{\text { exact }- \text { approx }}{\text { exact }}\right| \times 100=5.019=5.0 \%$
(ii) $\Rightarrow\left|\frac{\text { exact }- \text { approx }}{\text { exact }}\right| \times 100=0.199=0.2 \%$

So (ii), Simpson is here more accurate.

