Question

(i) Show that if

$$
I_{n}=\int_{0}^{\infty} x^{n} e^{-x} d x, \quad n \geq-\frac{1}{2}
$$

then

$$
I_{n}=n I_{n-1}
$$

Hint: you may assume that $\lim _{x \rightarrow+\infty}\left(x^{p} e^{-x}\right)=0$ for any value of p .
(ii) Evaluate I_{0} and hence calculate I_{8}.
(iii) Given that when $n=-\frac{1}{2}, I_{-\frac{1}{2}}=\sqrt{\pi}$, calculate $I_{\frac{5}{2}}$.

Answer
(i) $I_{n}=\int_{0}^{\infty} x^{n} e^{-x} d x \quad n \geq 0$

$$
\begin{array}{ll}
u=x^{n} & \frac{d v}{d x}=e^{-x} \\
d u=n x^{n-1} & v=-e^{-x}
\end{array}
$$

Integrate by parts:

$$
\begin{aligned}
I_{n} & =\left[-x^{n} e^{-x}\right]_{0}^{\infty}+n \int_{0}^{\infty} x^{n-1} e^{-x} d x \\
& =\lim _{x \rightarrow \infty}\left[-x^{n} e^{-x}\right]+0+n \int_{0}^{\infty} x^{n-1} e^{-x} d x \\
& =n \int_{0}^{\infty} x^{n-1} e^{-x} d x
\end{aligned}
$$

by hint
$\Rightarrow \underline{I_{n}=n I_{n-i}}$
(ii) $I_{0}=\int_{0}^{\infty} x^{0} e^{-x} d x=\int_{0}^{\infty} e^{-x} d x=\left[-e^{-x}\right]_{0}^{\infty}=+1$

Therefore

$$
\begin{aligned}
I_{8}=8 I_{7}=8 \times 7 I_{6}=\cdots & =8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 1 \\
& =8!=40320
\end{aligned}
$$

(iii) If $I_{-\frac{1}{2}}=\sqrt{\pi}$,

$$
I_{\frac{5}{2}}=\frac{5}{2} I_{\frac{3}{2}}=\frac{5}{2} \times \frac{3}{2} I_{\frac{1}{2}}=\frac{5}{2} \times \frac{3}{2} \times \frac{1}{2} I_{-\frac{1}{2}}=\frac{15}{8} \sqrt{\pi}
$$

