Question

(i) Show that if

$$I_n = \int_0^\infty x^n e^{-x} \, dx, \quad n \ge -\frac{1}{2},$$

then

$$I_n = nI_{n-1}$$

Hint: you may assume that $\lim_{x\to+\infty} (x^p e^{-x}) = 0$ for any value of p.

(ii) Evaluate I_0 and hence calculate I_8 .

(iii) Given that when $n = -\frac{1}{2}$, $I_{-\frac{1}{2}} = \sqrt{\pi}$, calculate $I_{\frac{5}{2}}$.

Answer

(i)
$$I_n = \int_0^\infty x^n e^{-x} dx \quad n \ge 0$$

 $u = x^n \quad \frac{dv}{dx} = e^{-x}$
 $du = nx^{n-1} \quad v = -e^{-x}$

Integrate by parts:

$$I_n = \left[-x^n e^{-x} \right]_0^\infty + n \int_0^\infty x^{n-1} e^{-x} dx$$

= $\lim_{x \to \infty} \left[-x^n e^{-x} \right] + 0 + n \int_0^\infty x^{n-1} e^{-x} dx$
= $n \int_0^\infty x^{n-1} e^{-x} dx$

by hint

$$\Rightarrow \underline{I_n = nI_{n-i}}$$

(ii)
$$I_0 = \int_0^\infty x^0 e^{-x} dx = \int_0^\infty e^{-x} dx = \left[-e^{-x}\right]_0^\infty = +1$$

Therefore

$$I_8 = 8I_7 = 8 \times 7I_6 = \dots = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 1$$
$$= 8! = 40320$$

(iii) If
$$I_{-\frac{1}{2}} = \sqrt{\pi}$$
,
 $I_{\frac{5}{2}} = \frac{5}{2}I_{\frac{3}{2}} = \frac{5}{2} \times \frac{3}{2}I_{\frac{1}{2}} = \frac{5}{2} \times \frac{3}{2} \times \frac{1}{2}I_{-\frac{1}{2}} = \frac{15}{8}\sqrt{\pi}$