QUESTION

Consider the matrices

$$
A=\left(\begin{array}{lll}
1 & 3 & 0 \\
3 & 1 & 4 \\
0 & 4 & 1
\end{array}\right) \quad B=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

(i) Compute the following matrices and their determinants:

$$
A+B, A B, B A
$$

(ii) Find the eigenvalues and the corresponding normalised eigenvectors for the matrix A.
(iii) Write down the quadratic form associated with A and express it in diagonal form. Say giving brief reasons for your answer, whether or not this quadratic form represents an ellipsoid.

ANSWER
(i)

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 3 & 0 \\
3 & 1 & 4 \\
0 & 4 & 1
\end{array}\right) \quad B=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) . \\
A+B=\left(\begin{array}{lll}
1 & 4 & 0 \\
4 & 1 & 5 \\
0 & 5 & 1
\end{array}\right), A B=\left(\begin{array}{lll}
3 & 1 & 3 \\
1 & 7 & 1 \\
4 & 1 & 4
\end{array}\right), B A=\left(\begin{array}{lll}
3 & 1 & 4 \\
1 & 7 & 1 \\
3 & 1 & 4
\end{array}\right) \\
\operatorname{det}(A+B)=-40, \operatorname{det}(A B)=\operatorname{det}(B A)=0
\end{gathered}
$$

(ii) The eigenvalues of A satisfy $(1-\lambda)[(1-\lambda)(1-\lambda)-16]-3[3(1-\lambda)-0]+$ $0=0$ which factorises as $(1-\lambda)\left[(1-\lambda)^{2}-25\right]=0$ so $\lambda=1$ or $1-\lambda= \pm 5$ with roots $\lambda=-4,1,6$.
For the eigenvalues:
$\lambda=-4$ gives $\left(\begin{array}{lll}5 & 3 & 0 \\ 3 & 5 & 4 \\ 0 & 4 & 5\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ so $5 x=-3 y$ and $5 z=-4 y$.
This gives a normalised eigenvector $\frac{1}{\sqrt{50}}\left(\begin{array}{c}-3 \\ 5 \\ -4\end{array}\right)$
$\lambda=1$ gives $\left(\begin{array}{lll}0 & 3 & 0 \\ 3 & 0 & 4 \\ 0 & 4 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ so $y=0$ and $3 x=-4 z$.
This gives a normalised eigenvector $\frac{1}{5}\left(\begin{array}{c}4 \\ 0 \\ -3\end{array}\right)$
$\lambda=-4$ gives $\left(\begin{array}{ccc}-5 & 3 & 0 \\ 3 & -5 & 4 \\ 0 & 4 & -5\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ so $5 x=3 y$ and $5 z=$
$4 y$.
This gives a normalised eigenvector $\frac{1}{\sqrt{50}}\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)$
(iii) The quadratic form associated to A is $x^{2}+y^{2}+z^{2}+6 x y+8 y z$ which does not represent an ellipsoid since it diagonalises to $X^{2}-4 Y^{2}+6 Z^{2}$ which has both negative and positive coefficients.

