QUESTION

(i) Find the solution to the following differential equation given the condition $y(0)=0$:

$$
\frac{d y}{d x}=\sin x \cos ^{2} y
$$

(ii) Find the general solution to the differential equation. Note any values of x for which the solutions may not be valid:

$$
x \log x \frac{d y}{d x}+y=2 \log x
$$

[Hint: Note that $\frac{d}{d x}\{\log (\log x)\}=\frac{1}{x \log x}$.]
(iii) Find the solution to the following differential equation given the conditions: $y(0)=1, y^{\prime}(0)=7$:

$$
\frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+29 y=0
$$

ANSWER

(i) Separable

$$
\begin{aligned}
\int \frac{1}{\cos ^{2} y} d y & =\int \sin x d x \\
\tan y & =-\cos x+k \\
y(0)=0 & \Rightarrow \tan (0)=-\cos (0)+k \\
& \Rightarrow 0=k-1 \text { or } k=1 \\
\tan y & =1-\cos x
\end{aligned}
$$

(ii) Integrating factor

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{1}{x \log x} y=\frac{2 \log x}{x \log x} x \neq 0,1 \\
& I F=e^{\int \frac{1}{x \log x} d x}=e^{\log (\log x)}=\log x
\end{aligned}
$$

$$
y \log x=\int \frac{2 \log x}{x} d x=\log ^{2} x+k
$$

by putting $u=\log x$
or

$$
y=\frac{k}{\log x}+\log x, x \neq 1
$$

This is valid for $x>o, x \neq 1$
(iii) The auxilliary equation is $\lambda^{2}-10 \lambda+29=0$ which has roots $\lambda=$ $\frac{10 \pm \sqrt{100-116}}{2}=5 \pm 2 i$
The solution is therefore

$$
\begin{aligned}
& \qquad y=e^{5 x}(A \cos 2 x+B \sin 2 x) \\
& 1=y(0)=A, \\
& y^{\prime}(0)=5 e^{5 x}(A \cos 2 x+B \sin 2 x)+e^{5 x}(-2 A \sin 2 x+2 B \cos 2 x) \\
& \text { so } 7=y^{\prime}(0)=5 A+2 B=5+2 B \Rightarrow B=1
\end{aligned}
$$

Hence the solution is

$$
y=e^{5 x}(\cos 2 x+\sin 2 x)
$$

