Question

The height of the ground in kilometers near an extinct volcano is given by the formula:

$$
h=\exp -\left(x^{2}+y^{2}-0.25\right)^{2}
$$

where x and y are the distances in kilometers from the centre of the crater in the north and east directions respectively.
(a) Sketch the shape of the volcano in section; find the height of the centre of the crater, of the rim around the crater, and at a large distance from the mountain.

Now find the slope of the paths:
(b) at $(0.5,0)$ in the $(1,0)$ direction
(c) at $(1,1)$ in the $(1,1)$ direction
(d) at $(1,1)$ in the $(2,-1)$ direction

Answer

$$
h=\exp -\left(x^{2}+y^{2}-0.25\right)^{2}=\exp -f(x y)
$$

(a) Shape:

contours

At the centre of the crater $x=y=0$ so $h=\exp -0.25^{2} \approx 0.9394 \mathrm{~km}$
On the rim $x^{2}+y^{2}=0.25$; rim has radius $\frac{1}{2} \mathrm{~km}$ and $h=1$
(the crater is approximately 60.6 metres below the rim)
Far from volcano $x, y \rightarrow \infty \Rightarrow h \rightarrow 0$
(b), (c), (d) all need ∇h

$$
\begin{aligned}
& \nabla h=\frac{\partial h}{\partial x} \mathbf{i}+\frac{\partial h}{\partial y} \mathbf{j}=\frac{\partial h}{\partial f} \frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial h}{\partial f} \frac{\partial f}{\partial y} \mathbf{j} \\
f(x, y) & =\left(x^{2}+y^{2}-0.25\right)^{2} \\
\frac{\partial f}{\partial x} & =2\left(x^{2}+y^{2}-0.25\right) \times 2 x=4 x\left(x^{2}+y^{2}-0.25\right) \\
\frac{\partial f}{\partial y} & =2\left(x^{2}+y^{2}-0.25\right) \times 2 y=4 y\left(x^{2}+y^{2}-0.25\right) \\
h & =\exp (-f) \Rightarrow \frac{d h}{d f}=-\exp (-f)=-h
\end{aligned}
$$

$\nabla h=-\exp -\left(x^{2}+y^{2}-0.25\right)^{2}\left(4 x\left(x^{2}+y^{2}-0.25\right) \mathbf{i}+4 y\left(x^{2}+y^{2}-0.25\right) \mathbf{j}\right)$
(b) At $(0.5,0) \nabla h=-(1)(0 \mathbf{i}+0 \mathbf{j})=0$

$$
\frac{\partial f}{\partial n}=\nabla f \cdot \hat{\mathbf{n}} \quad \hat{\mathbf{n}}=(1,0) \quad \Rightarrow \frac{\partial h}{\partial n}=\nabla f \cdot \hat{\mathbf{n}}=0
$$

all paths at $(1,0)$ are locally flat $[(1,0)$ is on the rim]
(c) At $(1,1)$ in the $\mathbf{n}=(1,1)$ direction

Unit vector in the direction (1,1) is $\hat{\mathbf{n}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$
\begin{aligned}
& \frac{\partial h}{\partial n}=\nabla h \cdot \hat{\mathbf{n}} \\
& \left(x^{2}+y^{2}-.25\right)=f^{\frac{1}{2}}=1.75 \\
& f=\left(x^{2}+y^{2}-.25\right)^{2}=3.0625 \Rightarrow e^{-f}=h=e^{-3.0625} \approx 0.0468
\end{aligned}
$$

$$
\begin{aligned}
\nabla h & =-0.0468 \times\{4 \times 1.75 \mathbf{i}+4 \times 1.75 \mathbf{j}\} \\
& =-0.327(\mathbf{i}+\mathbf{j}) \\
\nabla h \cdot \hat{\mathbf{n}} & =-0.327(\mathbf{i}+\mathbf{j}) \cdot \frac{1}{\sqrt{2}}(\mathbf{i}+\mathbf{j}) \\
& =\frac{-2}{\sqrt{2}} \times 0.327 \\
& \approx-0.463
\end{aligned}
$$

(d) At $(1,1)$ in the $\mathbf{n}=(2,-1)$ direction

$$
\begin{aligned}
\hat{\mathbf{n}}=\frac{1}{\sqrt{2^{2}+(-1)^{2}}}(2,-1) & =\left(\frac{2}{\sqrt{5}} \mathbf{i}-\frac{1}{\sqrt{5}} \mathbf{j}\right) \approx 0.894 \mathbf{i}-0.447 \mathbf{j} \\
\frac{\partial h}{\partial n}=\nabla h \cdot \hat{\mathbf{n}} & =-0.327(\mathbf{i}+\mathbf{j}) \times 0.447(2 \mathbf{i}+\mathbf{j}) \\
& =-0.327 \times 0.447 \\
& \approx-0.146
\end{aligned}
$$

