QUESTION

Find the value of the integral of $g(z)$ around the circle $|z-i|=2$ where
(a) $g(z)=\frac{1}{z^{2}+4}$
(b) $g(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$

ANSWER
Here C is the circle $|z-i|=2$. The singular points of $g(z)$ in both cases are $2 i$ and $-2 i$, and $2 i$ lies within C whilst $-2 i$ lies outside C. Thus
(a)

$$
\int_{C} \frac{d z}{z^{2}+4}=\int_{C} \frac{d z}{(z+2 i)(z-2 i)}=\int_{C} \frac{f(z)}{z-2 i}
$$

where $f(z)=\frac{1}{z+2 i}$. Thus the integral is equal to $2 \pi i\left(f(2 i)=\frac{\pi}{2}\right.$
(b) By the same method we find that the integral is equal to $\int_{C} \frac{h(z) d z}{(z-2 i)^{2}}$ where $h(z)=\frac{1}{(z+2 i)^{2}}$. Thus by the Cauchy integral formula $((*)$ with $n=$ 1)the answer is $2 \pi i h^{\prime}(2 i)=\frac{\pi}{16}$.

