QUESTION

Let C denote the boundary (taken in counterclockwise sense) of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$. Evaluate the following integrals:
(a)

$$
\int_{C} \frac{e^{-z}}{z-(\pi i / 2)} d z
$$

(b)

$$
\int_{C} \frac{\cos z}{z\left(z^{2}+8\right)} d z
$$

(c)

$$
\int_{C} \frac{\cosh z}{z^{2}} d z
$$

ANSWER
We shall use the Cauchy integral formulae in the following form.

$$
\begin{equation*}
\int_{c} \frac{f(z) d z}{(z-b)^{n+1}}=\frac{2 \pi i f^{(n)}(b)}{n!} \tag{*}
\end{equation*}
$$

Here f is analytic within and on a closed contour c.
(a) C is the square bounded by $x= \pm 2, y= \pm 2$ so $\pi i / 2$ lies within C. Thus by $\left({ }^{*}\right)$ with $n=0$ we get $\int_{C} \frac{e^{-z} d z}{z-\pi / 2}=2 \pi i e^{-\pi i / 2}=2 \pi i(-i)=2 \pi$.
(b) As $\sqrt{8}$ lies outside C we let $f(z)=\frac{\cos z}{z^{2}+8}$ in $\left(^{*}\right)$. Then

$$
\int_{C} \frac{\cos z}{z^{2}+8}=2 \pi i f(o)=2 \pi i / 8=\pi i / 4
$$

(c) In $\left({ }^{*}\right)$ we now put $n=1, f(z)=\cosh z$ so

$$
\int_{C} \frac{\cosh z}{z^{2}}=2 \pi i \sinh 0=0
$$

