QUESTION

(a) Consider the linear programming problem

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { subject to } & x_{j} \geq 0 & j=1, \ldots, n \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} & i=1, \ldots, m
\end{array}
$$

where the constraint matrix $A=\left(a_{i j}\right)$ has rank m, and $m<n$. Prove that a basic feasible solution is an extreme point of the convex set of feasible solutions.
(b) Give a brief explanation of the term cycling in the simplex method, and describe two methods by which cycling can be avoided.
(c) Explain what is meant by soft constraints, and indicate how they are incorporated into a linear programming problem.
(d) Find and evaluate all basic feasible solutions of the linear programming problem

$$
\begin{array}{ll}
\operatorname{maximize} & z=5 x_{1}+7 x_{2}+4 x_{3}+9 x_{4} \\
\text { subject to } & x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0 \\
& x_{1}+x_{2}+2 x_{3}-5 x_{4}=4 \\
& 3 x_{1}+5 x_{2}-2 x_{3}+x_{4}=8
\end{array}
$$

Verify that if the vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a feasible solution, then the vector $\left(x_{1}+1, x_{2}, x_{3}+2, x_{4}+1\right)$ is also a feasible solution. What can you conclude about the problem?

ANSWER

(a) Assume that the variables of the LP problem are \mathbf{x} and the constraints are $\mathbf{x} \geq \mathbf{0}$ and $A \mathbf{x}=\mathbf{b}$. Let $\mathbf{x}=\binom{\mathbf{x}^{B}}{\mathbf{x}^{N}} A=\left(\begin{array}{ll}\left.A^{B} A^{N}\right) \text {, so that }\end{array}\right.$ constraints are

$$
A^{B} \mathbf{x}^{B}+A^{N} \mathbf{x}^{N}=\mathbf{b}
$$

Let $\mathbf{x}^{B}=A_{B}^{-1}\left(\mathbf{b}-A^{N} \mathbf{x}^{N}\right)$ define a basic feasible solution $\mathbf{x}^{B}=A_{B}^{-1} \mathbf{b} \mathbf{x}_{N}=$ 0. Suppose

$$
\begin{equation*}
\mathbf{x}=\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \tag{1}
\end{equation*}
$$

for feasible solutions $\mathbf{x}_{1}, \mathbf{x}_{2}$, where $\mathbf{x}_{1} \neq \mathbf{x}_{2}$ and $0<\lambda<1$.
Let $\mathbf{x}_{1}=\binom{\mathbf{x}_{1}^{B}}{\mathbf{x}_{1}^{N}}$ and $\mathbf{x}_{2}=\binom{\mathbf{x}_{2}^{B}}{\mathbf{x}_{2}^{N}}$. From (1), $\mathbf{x}_{1}^{N}=\mathbf{x}_{2}^{N}=\mathbf{0}$, since otherwise $\mathbf{x}^{N} \neq \mathbf{0}$. For feasibility,

$$
\begin{array}{lll}
A^{B} \mathbf{x}_{1}^{B}=\mathbf{b} & \text { giving } & \mathbf{x}_{1}^{B}=\left(A^{B}\right)^{-1} \mathbf{b} \\
A^{B} \mathbf{x}_{2}^{B}=\mathbf{b} & \text { giving } & \mathbf{x}_{2}^{B}=\left(A^{B}\right)^{-1} \mathbf{b}
\end{array}
$$

Thus $\mathbf{x}_{1}^{B}=\mathbf{x}_{2}^{B}$ to give $\mathbf{x}_{1}=\mathbf{x}_{2}$, which contradicts the initial assumption $\mathrm{x}_{1} \neq \mathrm{x}_{2}$.
(b) Cycling occurs when a previously generated tableau reappears at some later iteration. To avoid cycling

- perturbation: add the vector $\left(\epsilon, \epsilon^{2}, \ldots, \epsilon^{m}\right)$ for small positive ϵ to the right hand sides to avoid degeneracy.
- Bland's smallest subscript rule: the pivot column is the one with a nagative x coefficient which has the smallest subscript on the variable; for equal smallest ratios, choose a row containing a basic variable with the smallest subscript.
(c) Soft constraints are ones which should preferably be satisfied, but can be varied at a cost. A soft constraint

$$
a_{i 1} x_{1}+\ldots a_{i n} x_{n}=b_{i}
$$

is replaced by

$$
a_{i 1} x_{1}+\ldots+a_{i n} x_{n}+u_{i}-v_{i}=b_{i} u_{i} \geq 0, v_{i} \geq 0
$$

and a contribution $\alpha_{o} u_{i}+\beta_{i} v_{i}$ for suitable chosen α_{i}, β_{i} is added to the cost in the objective function.

(d) | | Basic | Value | Feasible | z |
| :---: | :---: | :---: | :---: | :---: |
| | x_{1}, x_{2} | $6,-2$ | No | |
| x_{1}, x_{3} | $3, \frac{1}{2}$ | Yes | 17 | |
| x_{1}, x_{4} | $\frac{11}{4},-\frac{1}{4}$ | No | | |
| $x_{1} 2, x_{3}$ | 2,1 | Yes | 18 | |
| | x_{2}, x_{4} | $\frac{22}{13},-\frac{6}{13}$ | No | |
| | x_{3}, x_{4} | $-\frac{11}{2},-3$ | No | |

$$
\begin{aligned}
\left(x_{1}+1\right) & +x_{2}+2\left(x_{3}+2\right)-5\left(x_{4}+1\right) \\
& =x_{1}+x_{2}+2 x_{3}-5 x_{4}=4 \\
3\left(x_{1}+1\right) & +5 x_{2}-2\left(x_{3}+2\right)+\left(x_{4}+1\right) \\
& =3 x_{1}+5 x_{2}-2 x_{3}+x_{4}=8
\end{aligned}
$$

The objective function value of the solution is

$$
s\left(x_{1}+x\right)+7 x_{2}+4\left(x_{3}+2\right)+9\left(x_{4}+1\right)=5 x_{1}+7 x_{2}+4 x_{3}+9 x_{4}+22
$$

Since any feasible solution can be increased by 22 without affecting feasibility, the problem is unbounded.

