## QUESTION

Show that

$$
\left(\frac{y^{2}+1}{2 y}\right)^{2}=\frac{y^{2}}{4}+\frac{1}{2}+\frac{1}{4 y^{2}}
$$

A particle is projected along the positive $y$ - axis so that, initially, at time $t=0$, its position is $y=1$ and its velocity is $\frac{d y}{d t}=1$. The equation of motion of the particle is described by

$$
\frac{d^{2} y}{d t^{2}}=\frac{y}{4}-\frac{1}{4 y^{3}}
$$

Find the following:
(i) an expression for the velocity as a function of position;
(ii) an expression for the position as a function of time;
(iii) an expression for the velocity as a function of time.

ANSWER

$$
\left(\frac{y^{2}+1}{2 y}\right)^{2}=\frac{y^{4}+2 y^{2}+1}{4 y^{2}}=\frac{y^{2}}{4}+\frac{1}{2}+\frac{1}{4 y^{2}}
$$

(i) Let $v=\frac{d y}{d t}$. Then $\frac{d^{2} y}{d t^{2}}=\frac{d v}{d t}$ and using the chain rule: $\frac{d v}{d t}=\frac{d v}{d y} \frac{d y}{d t}=\frac{d v}{d y} v$. Hence the equation of motion becomes: $\frac{d v}{d y} v=\frac{y}{4}-\frac{1}{4 y^{3}}$ which is a first order separable differential equation. Integrating gives:

$$
\begin{aligned}
\int v d v & =\int \frac{y}{4}-\frac{1}{4 y^{3}} d y+C \\
\frac{1}{2} v^{2} & =\frac{y^{2}}{8}+\frac{1}{8 y^{2}}+C
\end{aligned}
$$

Using initial condition $y=1$ and $v=1$ when

$$
\frac{1}{2}=\frac{1}{8}+\frac{1}{8}+C \Rightarrow C=\frac{1}{4}
$$

So $\frac{1}{2} v^{2}=\frac{y^{2}}{8}+\frac{1}{8 y^{2}}+\frac{1}{4}$ or $v^{2}=\frac{y^{2}}{4}+\frac{1}{4 y^{2}}+\frac{1}{2}$
By first part of question : $v^{2}=\left(\frac{y^{2}+1}{2 y}\right)^{2}$ and so velocity as a function of position: $\left(\frac{d y}{d t}=\right) v=\frac{y^{2}+1}{2 y}$ (choose positive square root to agree with initial condition $v=1$ when $y=1$ )
(ii) Since $v=\frac{d y}{d t}$ we have $\frac{d y}{d t}=\frac{y^{2}+1}{2 y}$ which is first order separable. Integrating gives

$$
\int \frac{2 y}{y^{2}+1} d y=\int d t+k
$$

Either substitute $u=y^{2}+1$ or note that $\int \frac{f^{\prime}(y)}{f(y)} d y=\ln |f(y)|$ gives

$$
\ln \left|y^{2}+1\right|=t+K
$$

Using initial condition $y=1$ when $t=0$ gives

$$
\ln 2=0+k \Rightarrow k=\ln 2
$$

so $\ln \left(y^{2}+1\right)=t+\ln 2$
Taking exponentials: $y^{2}+1=e^{t+\ln 2}=e^{t} e^{\ln 2}=2 e^{t}$
So position as a function of time: $y=\sqrt{2 e^{t}-1}$
(Take positive square root to agree with initial condition $y=1$ when $t=0$.)
(iii) Since $\frac{d y}{d t}=\frac{y^{2}+1}{2 y}$, velocity as a function of time:

$$
\frac{d y}{d t}=\frac{\left(2 e^{t}-1\right)+1}{2\left(2 e^{t}-1\right)^{\frac{1}{2}}}=e^{t}\left(2 e^{t}-1\right)^{-\frac{1}{2}}
$$

