Question

Prove the standard forms for elliptic, parabolic and hyperbolic second order linear PDEs with constant coefficients of type

$$
a u_{x x}+2 b u_{x y}+c u_{y y}=0
$$

as derived in lectures. Hence check the form of their general solutions given in lectures.

Answer

Use lecture notes with the transformations

$$
\left\{\begin{array}{l}
\xi=\alpha y+\beta x \\
\eta=\gamma y+\delta x
\end{array}\right.
$$

where $\alpha, \beta, \gamma, \delta=$ const
These give rise to
$" \partial_{x}=\frac{\partial}{\partial x} " \rightarrow \partial_{x}=\frac{\partial \xi}{\partial x} \partial_{\xi}+\frac{\partial \eta}{\partial x} \partial_{\eta}=\beta \partial_{\xi}+\delta \partial_{\eta}$
$" \partial_{y}=\frac{\partial}{\partial y} "$ (shorthand) $\rightarrow \partial_{\mathrm{y}}=\frac{\partial \xi}{\partial \mathrm{y}} \partial_{\xi}+\frac{\partial \eta}{\partial \mathrm{y}} \partial_{\eta}=\alpha \partial_{\xi}+\gamma \partial_{\eta}$
$\Rightarrow \partial_{x}^{2}=\left(\beta \partial_{\xi}+\delta \partial_{\eta}\right)^{2}=\beta^{2} \partial_{\xi}^{2}+2 \beta \delta \partial_{\xi \eta}^{2}+\delta^{2} \partial_{\eta}^{2}$
Note: Would have to be more careful if β and δ were not constants

$$
\partial_{x y}^{2}=\left(\beta \partial_{\xi}+\delta \partial_{\eta}\right)\left(\alpha \partial_{\xi}+\gamma \partial_{\eta}\right)=\alpha \beta \partial_{\xi}^{2}+(\alpha \delta+\gamma \beta) \partial_{\xi \eta}^{2}
$$

$\Rightarrow \partial_{y}^{2}=\left(\alpha \partial_{\xi}+\gamma \partial_{\eta}\right)^{2}=\alpha^{2} \partial_{\xi}^{2}+2 \alpha \gamma \partial_{\xi \eta}^{2}+\gamma^{2} \partial_{\eta}^{2}$
$\Rightarrow a u_{x x}+2 b u_{x y}+c u_{y y}=0$ becomes

$$
\begin{aligned}
\left(a \beta^{2}+2 b \alpha \beta+c \alpha^{2}\right) & +(2 a \beta \delta+2 b(\alpha \delta+\gamma \beta)+2 c \alpha \delta) u_{\xi \eta} \\
& +\left(a \partial^{2}+2 b \gamma \delta+c \gamma^{2}\right) u_{\eta \eta}=0
\end{aligned}
$$

3 cases:
(i) hyperbolic : $b^{2}>a c$
(ii) parabolic : $\left.b^{2}=a c\right\}$ see lecture notes.
(iii) elliptic : $b^{2}<a c$

These give (\star) as:
(i) $\frac{\partial^{2} u}{\partial \xi \partial \eta}=0 \Rightarrow$ (integrate) $\frac{\partial \mathrm{u}}{\partial \xi}=\mathrm{p}^{\prime}(\xi) \Rightarrow$ (integrate) $\mathrm{u}=\mathrm{p}(\xi)+\mathrm{q}(\eta)$
(ii) $\frac{\partial^{2} u}{\partial \eta^{2}}=0 \Rightarrow$ (integrate) $\frac{\partial \mathrm{u}}{\partial \eta}=\mathrm{q}(\xi) \Rightarrow$ (integrate) $\mathrm{u}=\mathrm{p}(\xi)+\eta \mathrm{q}(\xi)$
(iii) $\frac{\partial^{2} u}{\partial \eta^{2}}+\frac{\partial^{2} u}{\partial \eta^{2}}=0 \Rightarrow$ solutions outlines later in the problem sheet

Remember can treat $p(\xi), q(\eta)$ etc. as arbitrary functions of ξ, η (cf. constants in ODEs)

