Exam Question

Topic: DiffInt
The function f satisfies the equation

$$
f(x)=\sqrt{3}+\int_{0}^{x}\left[1+(f(t))^{2}\right] d t
$$

By differentiating the integral, find a differential equation for $f(x)$. Hence find the function $f(x)$.

Solution

$$
f(x)] \sqrt{3}+\int_{0}^{x}\left[1+(f(t))^{2}\right] d t
$$

Differentiating with respect to x gives

$$
\frac{d f}{d x}=1+(f(x))^{2} \text { so } \frac{1}{1+f^{2}} \frac{d f}{d x}=1
$$

This gives $\tan ^{-1} f=x+c$, so $f(x)=\tan (x+c)$.
Now $f(0)=\tan c=\sqrt{3}$ so $c=\pi / 3$. Hence $f(x)=\tan \left(x+\frac{\pi}{3}\right)$.

