QUESTION

Let W_{t} and \tilde{W}_{t} be two independent Brownian motions and p a constant between -1 and 1. Is the process $X_{t}=p W_{t}+\tilde{W}_{t} \sqrt{1-p^{2}}$ continuous? What is its distribution? Is X_{t} a Brownian motion?
ANSWER

$$
X_{t}=P W_{t}+\tilde{W}_{t}\left(1-\rho^{2}\right)^{\frac{1}{2}}
$$

The process is continuous since W_{t}, \tilde{W}_{t} and ρ are. Mean:

$$
\begin{aligned}
\left\langle X_{t}\right\rangle & =\left\langle P W_{t}+\tilde{W}_{t}\left(1-p^{2}\right)^{\frac{1}{2}}\right\rangle \\
& =\rho\left\langle W_{t}\right\rangle+\left(1-p^{2}\right)^{\frac{1}{2}}\left\langle\tilde{W}_{t}\right\rangle \\
& =0
\end{aligned}
$$

since $W_{t} \sim N(0, t)$ and $\tilde{W}_{t} \sim N(0, t)$ by definition.
Variance:

$$
\begin{aligned}
\left\langle\left(X_{t}-0\right)^{2}\right\rangle & =\left\langle\left(P W_{t}+\tilde{W}_{t}\left(1-\rho^{2}\right)^{\frac{1}{2}}\right)^{2}\right\rangle \\
& =\left\langle\rho^{2} W_{t}^{2}+\tilde{W}_{t}^{2}\left(1-\rho^{2}\right)+2 P W_{t} \tilde{W}_{t}\left(1-p^{2}\right)^{\frac{1}{2}}\right\rangle \\
& =\rho^{2}\left\langle W_{t}^{2}\right\rangle+\left(1-\rho^{2}\right)\left\langle\tilde{W}_{t}^{2}\right\rangle+2 \rho \sqrt{1-\rho}\left\langle W_{t} \tilde{W}_{t}\right\rangle
\end{aligned}
$$

Now if W_{t} and \tilde{W}_{t} are independent they are uncorrelated, thus $\left\langle W_{t} \tilde{W}_{t}\right\rangle=0$. Hence

$$
\begin{aligned}
\left\langle\left(X_{t}-0\right)^{2}\right\rangle & =\rho^{2} \sigma_{t}^{2}+\left(1-\rho^{2}\right) \tilde{\sigma}_{t}^{2} \\
& =\rho^{2} t+\left(1-\rho^{2}\right) t \\
& =t
\end{aligned}
$$

Where σ_{t}^{2} is the variance of W_{t}^{2} (mean is zero) and $\tilde{\sigma}_{t}^{2}$ is the variance of \tilde{W}_{t}^{2} (mean is zero).
Thus since W_{T} and \tilde{W}_{t} are normal, $X_{t} \in N(0, t)$
Is it Brownian? Check conditions:
(i) X_{t} is continuous and $X_{0}=0$: It is continuous and by definition W_{0} and \tilde{W}_{0} are zero so condition is satisfied.
(ii) $X_{t} \in N(0, t)$
(iii) $X_{s+t}-X_{t} \in N(0, t)$ and independent of time $<s$:

$$
X_{s+t}-X_{s} \in \rho \underbrace{(\underbrace{\left(W_{t+s}-W_{s}\right)}_{\sim+s}+\sqrt{1-\rho^{2}} \underbrace{\left(\tilde{W}_{t+s}-\tilde{W}_{s}\right)}_{\in N(0, t)}}_{\in N(0, t)}
$$

by definition if W_{t}, \tilde{W}_{t} are brownian
Thus from the above calculations we have

$$
X_{s+t}-X_{s} \in N(0, t)
$$

The W_{S} and \tilde{W}_{s} are independent of S by definition too, so $X_{s+t}-X_{s}$ must be independent of S. So (iii) is satisfied.

Thus X_{t} is Brownian.

