QUESTION

Let W_t and \tilde{W}_t be two independent Brownian motions and p a constant between -1 and 1. Is the process $X_t = pW_t + \tilde{W}_t \sqrt{1-p^2}$ continuous? What is its distribution? Is X_t a Brownian motion? ANSWER

$$X_t = PW_t + \tilde{W}_t (1 - \rho^2)^{\frac{1}{2}}$$

The process is continuous since W_t , \tilde{W}_t and ρ are. Mean:

$$\begin{aligned} \langle X_t \rangle &= \left\langle PW_t + \tilde{W}_t (1 - p^2)^{\frac{1}{2}} \right\rangle \\ &= \rho \left\langle W_t \right\rangle + (1 - p^2)^{\frac{1}{2}} \left\langle \tilde{W}_t \right\rangle \\ &= 0 \end{aligned}$$

since $W_t \sim N(0, t)$ and $\tilde{W}_t \sim N(0, t)$ by definition. Variance:

$$\left\langle (X_t - 0)^2 \right\rangle = \left\langle (PW_t + \tilde{W}_t (1 - \rho^2)^{\frac{1}{2}})^2 \right\rangle$$

$$= \left\langle \rho^2 W_t^2 + \tilde{W}_t^2 (1 - \rho^2) + 2PW_t \tilde{W}_t (1 - p^2)^{\frac{1}{2}} \right\rangle$$

$$= \rho^2 \left\langle W_t^2 \right\rangle + (1 - \rho^2) \left\langle \tilde{W}_t^2 \right\rangle + 2\rho \sqrt{1 - \rho} \left\langle W_t \tilde{W}_t \right\rangle$$

Now if W_t and \tilde{W}_t are independent they are uncorrelated, thus $\langle W_t \tilde{W}_t \rangle = 0$. Hence

$$\left\langle (X_t - 0)^2 \right\rangle = \rho^2 \sigma_t^2 + (1 - \rho^2) \tilde{\sigma}_t^2$$
$$= \rho^2 t + (1 - \rho^2) t$$
$$= t$$

Where σ_t^2 is the variance of W_t^2 (mean is zero) and $\tilde{\sigma}_t^2$ is the variance of \tilde{W}_t^2 (mean is zero).

Thus since W_T and \tilde{W}_t are normal, $X_t \in N(0, t)$ Is it Brownian? Check conditions:

- (i) X_t is continuous and $X_0 = 0$: It is continuous and by definition W_0 and \tilde{W}_0 are zero so condition is satisfied.
- (ii) $X_t \in N(0,t)$

(iii) $X_{s+t} - X_t \in N(0, t)$ and independent of time $\langle s :$

$$X_{s+t} - X_s \in \rho \underbrace{(W_{t+s} - W_s)}_{\in N(0,t)} + \sqrt{1 - \rho^2} \underbrace{(\tilde{W}_{t+s} - \tilde{W}_s)}_{\in N(0,t)}$$

by definition if W_t , \tilde{W}_t are brownian

Thus from the above calculations we have

$$X_{s+t} - X_s \in N(0,t)$$

The W_S and \tilde{W}_s are independent of S by definition too, so $X_{s+t} - X_s$ must be independent of S. So (iii) is satisfied.

Thus X_t is Brownian.