QUESTION

If Z is a normal N(0, 1), then is the process $X_t = X\sqrt{t}$ continuous? What is it's distribution? Is X_t a Brownian motion? ANSWER

 $Z \in N(0, 1)$ is a continuous random variable. t is continuous time. Thus $Z\sqrt{t}$ is a continuous random variable. It's distribution follows from the standard transformation between normal distributions as per handout. If $Z \in N(0, 1)$ then

 $X_t = \underbrace{\sqrt{(t)}}_{\text{new standard deviation}} Z + \underbrace{0}_{\text{new mean}}$

a continuous random variable $X_t \in N(0, t)$. Is it Brownian? Check conditions in notes (p.24)

(i) X_t is continuous and $0 = X_0$

(ii)
$$X_t \in N(0,t)$$

(iii) $X_{s+t} - X_s \in N(0, t)$ and independent of time $\langle s: X_{s+t} - X_s = (\sqrt{s+t} - \sqrt{s}) Z \in N(0, \sqrt{s+t} - \sqrt{s})$ by above. Therefore (iii) is not satisfied so it is not Brownian.