$\begin{array}{c} \textbf{Ordinary Differential Equations} \\ \textbf{\textit{Classification}} \end{array}$

Question

Find 2 values of r for which $y = e^{rx}$ is a solution of y'' - y' - 2y = 0.

Find a solution to satisfy y(0) = 1 and y'(0) = 2.

Answer

$$y=e^{rx}$$
 is a solution to $y''-y'-2y=0$ if $r^2e^{rx}-re^{rx}-2e^{rx}=0$, i.e. $r^2-2-2=0$.

The roots of this quadratic equation are r=2 and r=-1.

The DE os linear and homogeneous, so any function of the form

$$y = Ae^{2x} + Be^{-x}$$

is a solution.

The solution will satisfy

$$1 = y(0) = A + B$$

 $2 = y'(0) = 2A - B$

if A and B take the values

$$A = 1$$
$$B = 0$$

So the solution is

$$y = e^{2x}$$