Question

Find the polar equation of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

with the origin at a focus. Find the polar equation with the origin at the other focus.

Answer

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \quad " a=3, b=2 "
$$

So $1-e^{2}=\frac{4}{9} \Rightarrow e^{2}=\frac{5}{9} \Rightarrow e=\frac{\sqrt{5}}{3}$. The Foci are at $(\pm \sqrt{5}, 0)$
When $x=\sqrt{5}$ we have $\frac{5}{9}+\frac{y^{2}}{4}=1 \Rightarrow y= \pm \frac{4}{3}$
So $l=\frac{4}{3}$
Thus the polar equation is

$$
\frac{4}{3 r}=1-\frac{\sqrt{5}}{3} \cos \theta
$$

Referred to the other focus the equation is

$$
\frac{4}{3 r}=1+\frac{\sqrt{5}}{3} \cos \theta
$$

