Question

- (a) Can the torque on a particle be zero without the force being zero? Explain.
- (b) Can the force on a particle be zero without the angular momentum being zero? Explain.

Answer

(a) If the torque is zero then $\mathbf{r} \times \mathbf{F} = 0$

Now $\mathbf{N} = \mathbf{r} \times \mathbf{F}$ hence $\mathbf{N} = 0 \Rightarrow \mathbf{r}$ or \mathbf{F} is zero, or \mathbf{r} and \mathbf{F} are parallel.

i.e. yes. either $\mathbf{r} = 0$ (the force is acting at the origin) or \mathbf{r} and \mathbf{F} are parallel; and so \mathbf{F} is acting in a direction through the origin.

(b) $\mathbf{F} = 0 \Rightarrow \mathbf{N} = \mathbf{r} \times \mathbf{F} = 0$

Using Newton's 2nd law: $0 = \mathbf{N} = \dot{\mathbf{L}} \Rightarrow \mathbf{L} = \text{constant}$. Thus \mathbf{L} just needs to be constant (not necessarily zero).

Answer: Yes.