Question

A particle of mass m moves along a space curve given by $\mathbf{r}=a \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j}$.
Find
(a) the torque about the origin of the force acting upon it,
(b) the angular momentum of the particle about the origin.

> Answer
> $\mathbf{r}=a \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j}$
> $\dot{\mathbf{r}}=-a \omega \sin \omega t \mathbf{i}+b \omega \cos \omega t \mathbf{j}$
> $\ddot{\mathbf{r}}=-\omega^{2}(a \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j})=-\omega^{2} \mathbf{r}$
(a) Using Newton's 2nd law: $m \ddot{\mathbf{r}}=\mathbf{F}$

The torque is $\mathbf{r} \times \mathbf{F}=\mathbf{r} \times m \ddot{\mathbf{r}}=-m \omega^{2} \mathbf{r} \times \mathbf{r}=0$
(b)

$$
\begin{aligned}
\text { Angular momentum } & =\mathbf{r} \times m \dot{\mathbf{r}} \\
& =m \omega\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a \cos \omega t & b \sin \omega t & 0 \\
-a \sin \omega t & b \cot \omega t & 0
\end{array}\right| \\
& =m a b \omega \mathbf{k}
\end{aligned}
$$

