Question

Suppose that 40% of the students in a large population are freshman, 30% are sophomores, 20% are juniors and 10% are seniors. Suppose that 10 students are selected at random from te population; and let X_1, X_2, X_3, X_4 denote, respectively, the numbers of freshmen, sophomores, juniors, and seniors that are obtained.

- (a) Determine $\rho(X_i, X_j)$ for each pair of values i and j (i < j).
- (b) For what values of i and j (i < j) is $\rho(X_i, X_j)$ most negative?
- (c) For what values of i and j (i < j) is $\rho(X_i, X_j)$ closest to 0?

Answer

	Prob.	Number
Freshman	$p_1 = 0.4$	x_1
Sophomore	$p_2 = 0.3$	x_2
Junior	$p_3 = 0.2$	x_3
Senior	$p_4 = 0.1$	x_4

 $n=10. \ \text{var}(X_i) = np_i(1-p_i) \ \text{cov}(X_i, X_j) = -np_ip_j$ $\text{var}(X_1) = 2.4, \ \text{var}(X_2) = 2.1, \ \text{var}(X_3) = 1.6, \ \text{var}(X_4) = 0.9$ We can form a matrix of variances and covariances.

Then we can find the correlations $\rho_{X_i,X_j} = \frac{\operatorname{cov}\left(X_i,X_j\right)}{\sqrt{\operatorname{var}\left(X_i\right)\operatorname{var}\left(X_j\right)}}$

(a)
$$\begin{pmatrix} 1 & -0.534 & -0.408 & -0.272 \\ -0.534 & 1 & -0.327 & -0.218 \\ -0.408 & -0.327 & 1 & -0.167 \\ -0.272 & -0.218 & -0.167 & 1 \end{pmatrix} = \text{correlation matrix}$$

(b)
$$i = 1, j = 2$$

(c)
$$i = 3, j = 4$$