Question

- a) Find the images, in the w-plane, of lines parallel to the real and imaginary axes in the z-plane, under the transformation $w = e^z$. Explain how this illustrates the concept of conformality.
- b) Show that any Mobius transforantion mapping the upper half plane $\operatorname{im}(z) \geq 0$ into the upper half plane $\operatorname{im}(w) \geq 0$ must be of the form

$$w = \frac{\alpha z + \beta}{\gamma z + \delta},$$

where α , β , γ , δ are all real and $\alpha\delta - \beta\gamma > 0$. Deduce the general form of Mobius transformation mapping $\operatorname{im}(z) \geq 0$ onto the right hand half plane $\operatorname{re}(w) \geq 0$.

Answer

a) Let $w = e^z$ and write z = x + iy. Then $w = e^{x+iy} = e^x e^{iy}$.

For x constant, as y varies over \mathbf{R} , w traces round the circle centre O radius e^x in the w plane, infinitely many times.

For y constant, as x varies over \mathbf{R} , w traces the ray from O (but not including O) making an angle $y \pmod{2\pi}$ with the positive real axis.

Lines parallel to the real and imaginary axes in the z-plane are orthogonal, as are circles centre O and rays from O in the w-plane.

This illustrates the angle-preserving property which is that of conformality.

b) The required transformations must map the real axis to the real axis (boundary \rightarrow boundary).

Thus a pair of finite non-real conjugate points map to a pair of finite non-real conjugate points. Hence $z=\infty$ maps onto the real axis and $w=\infty$ is the image point on the real axis.

i) If $\infty \to \infty$ then C = 0, so $d \neq 0$ and $w = \alpha z + \beta$. $z = 0 \to \text{real } w \text{ so } \beta \text{ is real.}$ then $z = 1 \to \text{real } w \text{ so } \alpha \text{ is real.}$

ii) If
$$C \neq 0$$
, $w = \frac{Az + B}{z + D}$
 $z = -D \rightarrow w = \infty$ so $-D$ must be real.
 $D = 0 \Rightarrow w = A + \frac{B}{z}$
 $z = \infty \rightarrow \text{real } w \text{ so } A \text{ is real.}$

then
$$z = 1 \rightarrow \text{real } w \text{ so } B \text{ is real.}$$

$$D \neq 0 \Rightarrow z = 0 \to \frac{B}{D}$$
 - real so B is real.

then
$$z = 1 \rightarrow w$$
 real so A is real.

Thus in all cases the transformation has the form

$$w = \frac{\alpha z + \beta}{\gamma z + \delta}, \ \alpha, \ \beta, \ \gamma, \ \delta \text{ real}$$

when
$$z = i$$
, $imw > 0$,

$$\frac{\alpha z + \beta}{\gamma z + \delta} = \frac{(\alpha \delta - \beta \gamma)i + (\alpha \gamma + \beta \delta)}{\gamma^2 + \delta^2} \text{ so } \alpha \delta - \beta \gamma > 0.$$

Now
$$w = e^{-i\frac{\pi}{2}} \frac{\alpha z + \beta}{\gamma z + \delta}$$
 maps $\text{im} z \ge 0$ onto $\text{re} z \ge 0$.

Conversely if
$$w = \frac{az+b}{cz+d}$$
 maps $\operatorname{im} z \geq 0$ to $\operatorname{re} w \geq 0$ then $w = e^{i\frac{\pi}{2}}\frac{az+b}{cz+d}$ maps $\operatorname{im} z \geq 0$ to $\operatorname{im} w \geq 0$.

So
$$e^{i\frac{\pi}{2}}a = \alpha$$
- real

$$a = \alpha e^{-i\frac{\pi}{2}}$$

So
$$w = e^{-i\frac{\pi}{2}} \frac{\alpha z + \beta}{\gamma z + \delta}$$

$$\alpha$$
, β , γ , δ are all real and $\alpha\delta - \beta\gamma > 0$.