Question

a) Let C denote the spiral

$$
\left\{z: z=e^{\theta^{2}+i \theta} 0 \leq \theta \leq 4 \pi\right\} .
$$

Evaluate $\int_{C} \frac{d z}{z}$, giving a careful explanation of your reasoning.
b) Use Cauchy's Integral Formula to evaluate

$$
\int_{C} \frac{e^{z} \sin ^{2} \pi z}{(z-1)^{3}} d z
$$

where C is a simple closed contour having $z=1$ in its interior.

Answer

a) On $C, z=e^{\theta^{2}} e^{i \theta}$
$z=e^{\theta^{2}}$ increase so $|z|$ increase with θ. So we have a spiral DIAGRAM

We need to use the logarithmic function, but we have to divide C up into subsets on which $\arg z$ changes by less than 2π,
on $C_{1} \quad 0 \leq \arg z \leq \frac{3 \pi}{2}$
on $C_{2} \quad \frac{3 \pi}{2} \leq \arg z \leq 3 \pi$
on $C_{3} \quad 3 \pi \leq \arg z \leq 4 \pi$
on $C_{1} \quad \frac{d}{d z} \log _{\frac{3 \pi}{4}} z=\frac{1}{z}$
on $C_{2} \quad \frac{d}{d z} \log _{\frac{9 \pi}{4}} z=\frac{1}{z}$
on $C_{3} \quad \frac{d}{d z} \log _{\frac{7 \pi}{2}} z=\frac{1}{z}$
so $\int_{C} \frac{d z}{z}=\int_{C_{1}} \frac{d z}{z}+\int_{C_{2}} \frac{d z}{z}+\int_{C_{3}} \frac{d z}{z}$

$$
=[\log |z|+i \arg z]_{C_{1}}+[\log |z|+i \arg z]_{C_{2}}+[\log |z|+i \arg z]_{C_{3}}
$$

Because $\arg z$ has been chosen continuously on C, this reduces to $[\log |z|+i \arg z]_{C}=\log e^{(4 \pi)^{2}}-\log e^{0}+i 4 \pi=16 \pi^{2}+4 \pi i$

Or this could be done directly from the definition of the integral which is rather easier, as follows

$$
\begin{aligned}
& \int_{C} \frac{d z}{z} \quad z=e^{\theta^{2}+i \theta} \quad d z=(2 \theta+i) e^{\theta^{2}+i \theta} \\
& \text { so } \int_{C} \frac{d z}{z}=\int_{0}^{4 \pi} 2 \theta+i=\left[\theta^{2}+i \theta\right]_{0}^{4 \pi}=16 \pi^{2}+4 \pi i
\end{aligned}
$$

b) $\int_{C} \frac{e^{z} \sin ^{2} \pi z}{(z-1)^{3}} d z=\frac{2 \pi i}{2!} \frac{d^{2}}{d z^{2}}\left(e^{z} \sin ^{2} \pi z\right)_{z=1}$
$\frac{d}{d z} e^{z} \sin ^{2} \pi z=e^{z} \sin ^{2} \pi z+e^{z} 2 \sin \pi z \cdot \pi \cos \pi z$ $=e^{z} \sin ^{2} \pi z+e^{z} \pi \sin 2 \pi z$
$\frac{d^{2}}{d z^{2}} e^{z} \sin ^{2} \pi z=e^{z} \sin ^{2} \pi z+e^{z} \pi \sin 2 \pi z+e^{z} \pi \sin 2 \pi z+e^{z} 4 \pi^{2} \cos 2 \pi z$
At $z=1$
$\sin \pi z=0 \quad \sin 2 \pi z=0 \quad \cos 2 \pi z=1$
so the integral is $\frac{2 \pi i}{2!} 2 \pi^{2} e=2 \pi^{3} e i$

