## Question

Explain, without proofs, the relationship between differentiability of a function of a complex variable and the Cauchy-Riemann equations.
Prove that the real and imaginary parts of a differentiable function satisfy Laplace's equation.
Let $u(x, y)=\sin x \sinh y$.
Show that $u$ is a harmonic function. Find a function $v$ such that $f=u+i v$ is a differentiable function of $z=x+i y$.
Write down an expression for the derivative of $f$ in terms of $z$.

## Answer

Let $f(z)=u(x, y)+i v(x, y)$ where $z=x+i y$. The function $f$ is differentiable at $z_{0}$ if $\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}$ tends to a limit as $h \rightarrow 0$.
The function $f$ satisfies the Cauchy-Riemann equations at $z_{0}$ if $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ at $z_{0}$.
If $f$ is differentiable then it satisfies the Cauchy-Riemann equations. The converse is false in general, but we have a partial converse. If $f$ satisfies the Cauchy-Riemann equations at $z_{0}=x_{0}+i y_{0}$, and if the partial derivatives exist in a neighbourhood of $\left(x_{0}, y_{0}\right)$ and are continuous at $\left(x_{0}, y_{0}\right)$ then $f$ is differentiable at $z_{0}$.
Now if $f$ is differentiable then $f$ is analytic, so partial derivatives of all orders exist and are continuous

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \Rightarrow \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y} \\
& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \Rightarrow \frac{\partial^{2} u}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial y \partial x}
\end{aligned}
$$

Mixed partial derivatives are equal, so adding gives
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
Also

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \Rightarrow \frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} v}{\partial y^{2}} \\
& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \Rightarrow \frac{\partial^{2} u}{\partial x \partial y}=-\frac{\partial^{2} v}{\partial x^{2}}
\end{aligned}
$$

subtracting and equating mixed derivatives gives
$\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0$

Now $u=\sin x \sinh y$
$\frac{\partial u}{\partial x}=\cos x \sinh y \quad \frac{\partial u}{\partial y}=\sin x \cosh y$
$\frac{\partial^{2} u}{\partial x^{2}}=-\sin x \sinh y \quad \frac{\partial^{2} v}{\partial y^{2}}=\sin x \sinh y$
So $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ i.e. $u$ is harmonic.
$\frac{\partial u}{\partial x}=\cos x \sinh y=\frac{\partial v}{\partial y}$
so $v=\cos x \cosh y+\phi(x)$
$-\frac{\partial u}{\partial y}=-\sin x \cosh y=\frac{\partial v}{\partial x}$
so $v=\cos x \cosh y+\psi(y)$
so $\phi(x)=\psi(y)=$ constant
Thus $v=\cos x \cosh y+c$

$$
\begin{aligned}
f & =\sin x \sinh y+i \cos x \cosh y \\
& =\sin x(-i \sin i y)+i \cos x \cos i y \\
& =i(\cos x \cos i y-\sin x \sin i y) \\
& =i \cos z
\end{aligned}
$$

So $\frac{d f}{d z}=-i \sin z$
Or $\frac{d f}{d z}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$
$=\cos x \sinh y-i \sin x \cosh y$
$=-i(\sin x \cos i y+\cos x \sin i y)$
$=-i \sin z$

