Question

Let

$$
\begin{aligned}
& \gamma_{1}(t)=(\cosh 2 t+2 \cosh t, 2 \sinh t-\sinh 2 t) \\
& \gamma_{2}(t)=(\cosh 2 t-2 \cosh t, 2 \sinh t-\sinh 2 t) .
\end{aligned}
$$

Show that γ_{2} is a regular curve, while γ_{1} has a singularity at the point (3, 0). Sketch γ_{1} and γ_{2}. Find the centre of curvature of γ_{2} at the point $(-1,0)$.
[Exploit symmetry, and look at the directions of the tangents to the curves.]
Answer
Write $\gamma(t)=(\cosh 2 t+2 \epsilon \cosh t, 2 \sinh t-\epsilon \sinh 2 t)$
Where $\epsilon= \pm 1$ (so γ_{i} has $\epsilon=(-1)^{i+1}$)
So $\dot{\gamma}(t)=(2 \sinh 2 t+2 \epsilon \sinh t, 2 \cosh t-2 \epsilon \cosh 2 t)$.
For $\epsilon=-1$ the second component never vanishes ($\cosh t$ always ≤ 1); for $\epsilon=+1$ we have
first component $=2 \sinh t(2 \cosh t+\epsilon)$, which $=0$ just when $\sinh t=0$, i.e. $t=0$; then $\dot{\gamma}(0)=(0,0), \gamma(0)=(3,0)$.
Write $\gamma_{i}(t)=\left(x_{i}(t), y_{i}(t)\right)$ for $i=1,2$ and note the following facts

- $x_{i}(t)$ is an even function $(\rightarrow+\infty$ as $t \rightarrow \pm \infty), y_{i}(t)$ is an odd function.
- $y_{i}(t)=0$ when $2 \sinh t=2 \epsilon \sinh t \cosh t$, i.e. $t=0$ or $\epsilon \cosh t=1$, i.e. $t=0(\epsilon=1)$. So γ_{1} crosses the x-axis at $(3,0), \gamma_{2}$ crosses the x-axis at $(-1,0)$.
- $x_{i}(t)=0$ when $\cosh 2 t=-2 \epsilon \cosh t$, which does not happen when $\epsilon=1$.

When $\epsilon=-1$ it occurs when $c=\cosh t$ satisfies $2 c^{2}-1=2 c$, i.e. $c=\frac{1}{2}(1+\sqrt{3})(c$ always ≥ 1).
For $\epsilon=+1$ we have

$$
\begin{aligned}
\gamma(t) & =\left(1+\frac{(2 t)^{2}}{2!}+\cdots+2\left(1+\frac{t^{2}}{2!}+\cdots\right), 2\left(t+\frac{t^{3}}{3!}+\cdots\right)-\left(2 t+\frac{(2 t)^{3}}{3!}+\cdots\right)\right) \\
& =(3,0)+\left(3 t^{2}+\cdots,-t^{3}+\cdots\right)
\end{aligned}
$$

$\Rightarrow \frac{3}{2}$-power cusp.
Also $\dot{x}_{i}(t)$ has the same sign as t, and $\dot{y}_{i}(t)$ is always ≤ 0 for $i=1$ and >0 for $i=2$.
Finally, the curves must never meet, they lie on opposite sides of the curve

$$
(\cosh 2 t, \sinh 2 t)=\gamma_{0}(t), \quad \text { i.e. } x^{2}-y^{2}=1
$$

When $t=0$ we find $\left\|\dot{\gamma}_{2}\right\|=4$ and $\dot{x} \ddot{y}-\dot{y} \ddot{x}=-8$, so $\rho=\frac{1}{K}=-8$.
Also $N(0)=(-1,0)$ so centre of curvature is

$$
\gamma_{2}(0)+\rho N(0)=(7,0)
$$

