Question

Obtain the first two terms of an asymptotic expansion for solutions of the following differential equations as $x \rightarrow+\infty$ using the method of dominant balance.
(a) $y^{\prime}+y^{4}=x$
(b) $y^{\prime}+y^{\frac{1}{2}}=x^{2}$

Answer

(a) $y^{\prime}+y^{4}=x$
(1) $\begin{array}{cc}\uparrow \\ (2) & (3)\end{array}$

Look for dominant balance solution as $x \rightarrow+\infty$.
(1) and (3)
$y^{\prime}=x \Rightarrow y=\frac{x^{2}}{2}+c$
But then $y^{4}=O\left(x^{8}\right)$ as $x \rightarrow+\infty$ which is inconsistent as we've assumed $y^{4}=o\left(y^{\prime}\right)$ and $o(x)$.
(1) and (2)
$y^{\prime}=-y^{4} \Rightarrow \int \frac{d y}{y^{4}}=-\int d x \Rightarrow-\frac{1}{3 y^{3}}=-x+c$
$\Rightarrow y^{3}=\frac{1}{3(x+c)} \Rightarrow y=\frac{1}{[3(x+c)]^{\frac{1}{3}}}=o(x)$ as $x \rightarrow+\infty$ Therefore inconsistent.
(2) and (3)
$y^{4}=x \Rightarrow y= \pm x^{\frac{1}{4}} \Rightarrow y^{\prime}=O\left(x^{-\frac{3}{4}}\right)$ as $x \rightarrow+\infty$ so $y^{\prime}=o\left(y^{4}\right)$ and $o(x) \sqrt{ } \sqrt{ }$
This is a good balance. Hence $y \sim \pm x^{\frac{1}{4}}, \pm i x^{\frac{1}{4}}$ as $x \rightarrow+\infty$ (boundary conditions would determine)
(b) $y^{\prime}+y^{\frac{1}{2}}=x^{2}$
$\begin{array}{ccc}(1) & \left(\begin{array}{c}\uparrow \\ (2)\end{array}\right. & \binom{\uparrow}{\hline}\end{array}$
Look for dominant balance solutions as $x \rightarrow+\infty$.
(1) and (3)
$y^{\prime}=x^{2} \Rightarrow y=\frac{x^{3}}{3}+c \Rightarrow y^{\frac{1}{2}}=O\left(x^{\frac{3}{2}}\right) \quad x \rightarrow+\infty$
and $x^{\frac{3}{2}}=o\left(x^{2}\right)$ so this looks consistent.
We must still check the other possible balances to make sure there's no ambiguity.
(1) and (2)
$y^{\prime}+y^{\frac{1}{2}}=0 \Rightarrow \int \frac{d y}{\sqrt{y}}=-\int d x \Rightarrow 2 y^{\frac{1}{2}}=-x+c \Rightarrow y=\frac{(x-c)^{2}}{4}$
Therefore $y^{\frac{1}{2}}=O(x) \quad x \rightarrow+\infty$ but therefore $y^{\frac{1}{2}}=o\left(x^{2}\right)$ an inconsistency.
(2) and (3)
$y^{\frac{1}{2}}=x^{2} \Rightarrow y=x^{4} \Rightarrow y^{\prime}=4 x^{3}$ so $y^{\frac{1}{2}}=o\left(y^{\prime}\right)$ an inconsistency.
Hence $y \sim \frac{x^{3}}{3}+c$ as $\mathrm{x} \rightarrow+\infty$.

