Complex Numbers

History

"The historical development of complex number"D.R.Green Mathematical Gazette June 1976 pp99-107.
In \mathbf{N} we cannot solve $x+2=1$
In \mathbf{Z} we cannot solve $2 x=1$
In \mathbf{Q} we cannot solve $x^{2}=2$
In \mathbf{R} we cannot solve $x^{2}+1=0$
You have all done some work on complex numbers, and this introduction is in the spirit of the construction from \mathbf{Z} to \mathbf{Q}.

Definition

A complex number is an ordered pair (x, y) of real numbers, with addition and multiplication defined by

$$
\begin{aligned}
(x, y)+\left(x^{\prime}, y^{\prime}\right) & =\left(x+x^{\prime}, y+y^{\prime}\right) \\
(x, y) \cdot\left(x^{\prime}, y^{\prime}\right) & =\left(x x^{\prime}-y y^{\prime}, x y^{\prime}+y x^{\prime}\right)
\end{aligned}
$$

With these definitions the complex number system \mathbf{C} has all the properties of a field. Now we have

$$
\begin{aligned}
(x, 0)+\left(x^{\prime}, 0\right) & =\left(x+x^{\prime}, 0\right) \\
(x, 0)\left(x^{\prime}, 0\right) & =\left(x x^{\prime}, 0\right)
\end{aligned}
$$

so there is a subsystem which behaves like \mathbf{R}.
$(0,1)(0,1)=(-1,0)$
$(x, y)=(x, 0)+(0, y)=(x, 0)+(y, 0)(0,1)$
We shall abbreviate $(x, 0)$ to x and $(0,1)$ to i.
So we write $(x, y)=x+y i$
x is called the real part of the complex number.
y is called the imaginary part of the complex number.
Using this new symbolism we have:
$(x+y i)+\left(x^{\prime}+y^{\prime} i\right)=\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right) i$
$(x+y i)\left(x^{\prime}+y^{\prime} i\right)=\left(x x^{\prime}-y y^{\prime}\right)+\left(x y^{\prime}+y x^{\prime}\right) i$

The Complex Plane

We can represent $x+y i$ as a point in the plane with coordinates (x, y).

If we write $z=x+y i$ then we have $x=r \cos \theta \quad y=r \sin \theta$
So $z=r(\cos \theta+i \sin \theta)$ - Polar form of z.
r is called the modulus of $z ;|z|=\sqrt{\left(x^{2}+y^{2}\right)}$
θ is called the argument of $z ; \arg z$ it satisfies $\tan \theta=\frac{y}{x}$
There are many values of θ satisfying $\tan \theta=\frac{y}{x}$. The value of θ is taken to satisfy $-\pi<\theta \leq \pi$ and this is called the principal argument of z.
So

$$
\begin{aligned}
\arg (1+i) & =\frac{\pi}{4} \\
\arg i & =\frac{\pi}{2} \\
\arg -1 & =\pi \\
\arg (-1-i) & =-\frac{3 \pi}{4}
\end{aligned}
$$

Note that to say $\theta=\tan ^{-1} \frac{y}{x}$ is not correct, for it does not distinguish $1+i(x=y=1)$ from $-1-i(x=y=-1)$.
Addition in the complex plane is interpreted geometrically through the parallelogram law.

Triangle inequality $\left|z+z^{\prime}\right| \leq|z|+\left|z^{\prime}\right|$

Example

Prove from the triangle inequality that
$\left||z|-\left|z^{\prime}\right|\right| \leq\left|z+z^{\prime}\right|$
$|z|-\left|z^{\prime}\right|=\left|\left(z+z^{\prime}\right)-z^{\prime}\right|-\left|z^{\prime}\right| \leq\left|z+z^{\prime}\right|+\left|z^{\prime}\right|-\left|z^{\prime}\right|=\left|z+z^{\prime}\right|$
Similarly $\left|z^{\prime}\right|-|z| \leq\left|z^{\prime}+z\right|$
Thus $\left||z|-\left|z^{\prime}\right|\right| \leq\left|z+z^{\prime}\right|$
Multiplication is best approached using the polar form.
Let $z=r(\cos \theta+i \sin \theta)$;

$$
z^{\prime}=r^{\prime}\left(\cos \theta^{\prime}+i \sin \theta^{\prime}\right)
$$

Multiplying it is easily verified that $z z^{\prime}=r r^{\prime}\left(\cos \left(\theta+\theta^{\prime}\right)+i \sin \left(\theta+\theta^{\prime}\right)\right)$
Thus we have $\left|z z^{\prime}\right|=r r^{\prime}=|z|\left|z^{\prime}\right|$
$\arg z z^{\prime}=\arg z+\arg z^{\prime}(\bmod 2 \pi)$

Exercise

Prove by induction that $\left|z^{n}\right|=|z|^{n}$
$\arg z^{n}=n \arg z(\bmod 2 \pi) n \epsilon \mathbf{N}$
If $m=-n \quad n \epsilon \mathbf{N}$
Then $z^{m} z^{n}=1$ So $\left|z^{m}\right|\left|z^{n}\right|=1$
i.e. $\left|z^{m}\right||z|^{n}=1$
so $\left|z^{m}\right|=\frac{1}{|z|^{n}}=|z|^{m}$

Exercise

Prove that if $m=-n \quad n \epsilon \mathbf{N}$
then $\arg z^{m}=m \arg z \bmod 2 \pi$
The most important feature of the complex number system is that not only does $x^{2}+1=0$ have a solution in \mathbf{C}, but all polynomial equations have solutions in \mathbf{C}.
This fact was first given a complete proof by Gauss in 1799.

Fundamental Theorem of Algebra

Let $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n} \quad a_{i} \epsilon \mathbf{C}$
Then the equation $p(z)=0$ has a solution in \mathbf{C}
It follows that if c is a such solution then $p(z)=(z-c)\left(b_{0}+b_{1} z+\ldots+b_{n-1} z^{n-1}\right)$

Exercise

Try to prove this.

Corollary

$p(z)$ can be expressed as a product of n linear factors.
$p(z)=a_{n}\left(z-c_{1}\right)\left(z-c_{2}\right) \ldots\left(z-c_{n}\right)$ where some of the c_{i} may be equal. Thus every polynomial has at most n roots in \mathbf{C}.
Proof by induction is left as an exercise.

Examples

$$
\begin{array}{rlrl}
x^{2}+1 & & \text { irreducible } & \\
x^{2}+1 & =(x+i)(x-i) & & \text { over } \mathbf{R} \\
x^{3}-x^{2}+2 x-2 & =(x-1)\left(x^{2}+2\right) & & \text { over } \mathbf{C} \\
x^{3}-x^{2}+2 x-2 & =(x-1)(x+i \sqrt{2})(x-i \sqrt{2}) & & \text { over } \mathbf{R} \\
\hline
\end{array}
$$

Complex conjugates

Let $z=x+i y$. Then we define the complex conjugate of z to be \bar{z} or $z^{*}=x-i y$

Properties

i) $\overline{z+w}=\bar{z}+\bar{w} \quad$ direct verification
ii) $\overline{z w}=\overline{z w} \quad$ direct verification
iii) $\overline{z^{n}}=(\bar{z})^{n} \quad$ from ii) by induction
iv) If p is a polynomial $p(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n}$

$$
\overline{p(z)}=\bar{a}_{0}+\bar{a}_{1} \bar{z}+\bar{a}_{2} \bar{z}^{2}+\ldots+\bar{a}_{n} \bar{z}^{n}
$$

This result is used to prove that if z is a root of a polynomial with real coefficients then \bar{z} is also a root. For in this case if $a_{i} \in \mathbf{R}$ then $\bar{a}_{i}=a_{i}$. So $\overline{p(z)}=p(\bar{z})$
Thus if $p(z)=0 \quad p(\bar{z})=0$ also.
So for a real polynomial all the complex roots have corresponding conjugates.
Thus a real polynomial of odd degree must have at least one real root.
v) $z \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2}$

This is useful in such situations as

$$
\frac{3+4 i}{2-i}=\frac{(3+4 i)(2+i)}{5}=\frac{2+11 i}{5}
$$

vi) $\frac{z+\bar{z}}{2}=\operatorname{Re} z=x$
$\frac{z-\bar{z}}{2}=i \operatorname{Im} z=i y$

De Moivre's Theorem

$(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
Proof by induction left as an exercise.

The roots of unity

We consider the equation $z^{n}=1$.
If $z=r(\cos \theta+i \sin \theta)$
$z^{n}=r^{n}(\cos n \theta+i \sin n \theta)$
So $r^{n}=1$ which gives $r=1$, and $\cos n \theta=1$.
This gives $\theta=0, \frac{2 \pi}{n}, \frac{4 \pi}{n}, \ldots, \frac{(2 n-2) \pi}{n}$
Thus the solutions of $z^{n}=1$ are
$\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n} \quad k=0,1, \ldots n-1$ and these are all different.
For example take $n=3$ the roots of $z^{3}=1$ are
1, $\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}, \quad \cos 4 \pi 3+i \sin \frac{4 \pi}{3}$
$1, \frac{-1+\sqrt{3} i}{2}, \frac{-1-\sqrt{3} i}{2}$
They lie at the vertices of a regular triangle on the unit circle in the complex plane.

In general the n-th roots of unity lie at the vertices of a regular n-gon.

Exercise

Let the cube roots of unity be denoted by $1, w_{1}, w_{2}$. Prove that $w_{1}^{2}=w_{2}$ and $w_{2}^{2}=w_{1}$.
Prove that $w_{1}, w_{1}^{2}, w_{1}^{3}$ are all different, and $w_{2}, w_{2}^{2}, w_{2}^{3}$ are all different, and each set is a permutation of $1, w_{1}, w_{2}$. Investigate this situation for $n=5,8$ and then see if you can make any general statements for the n-th roots of unity.
Useful in this exercise might be:

Euler's formula

Assuming the series for
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$
Replace x by $i x$ in the first and separate the resulting series into real and imaginary parts to verify that
$e^{i x}=\cos x+i \sin x$
Then using $e^{-i x}=\cos x-i \sin x$
We obtain $\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$
$\sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)$
These look like the formula for hyperbolic functions. Investigate this connection further.
Euler's formula enables us to deal with the roots of unity more concisely.
Since $\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}=e^{i \frac{2 k \pi}{n}}$
we can obtain them as follows
$z^{n}=1=e^{2 \pi i}=e^{4 \pi i}=\ldots=e^{2 k \pi i}$
So $z=e^{\frac{2 k \pi i}{n}}$
The formula with DeMoivre's theorem is useful in summing series and evaluating integrals.

