QUESTION

Find the eigenvalues and eigenvectors of A and hence find A^{7} where

$$
A=\left[\begin{array}{ll}
29 & -15 \\
50 & -26
\end{array}\right]
$$

ANSWER

The eigenvalues are 4 and -1 with eigenvectors $\left[\begin{array}{l}3 \\ 5\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ respectively. Hence $A^{r}=M \Lambda^{r} M^{-1}$ where $\Lambda=\operatorname{diag}(4,-1)$, and the columns of M are the eigenvectors, so

$$
\begin{aligned}
A^{r} & =\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right]\left[\begin{array}{cc}
4^{r} & 0 \\
0 & (-1)^{r}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
6 \times 4^{r}-5(-1)^{r} & -3\left(4^{r}-(-1)^{r}\right) \\
10\left(4^{r}-(-1)^{r}\right) & -5 \times 4^{r}+6(-1)^{r}
\end{array}\right] \\
A^{7} & =\left[\begin{array}{cc}
98309 & -49155 \\
163850 & -81926
\end{array}\right]
\end{aligned}
$$

