Question

1. Show that, if $\sum_{n=0}^{\infty} a_{n}$ converges and if $\sum_{n=0}^{\infty} b_{n}$ diverges, then the series of sums $\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right)$ diverges.
2. Show that, if $\sum_{n=0}^{\infty} a_{n}$ diverges and if $c \neq 0$, then the series of multiples $\sum_{n=0}^{\infty} c a_{n}$ diverges.

Answer

1. we argue by contradiction: suppose that $\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right)$ converges. Since $\sum_{n=0}^{\infty} a_{n}$ converges by assumption, the arithmetic series, yields that their difference also converges. However, their difference is $\sum_{n=0}^{\infty}\left(a_{n}+\right.$ $\left.b_{n}-a_{n}\right)=\sum_{n=0}^{\infty} b_{n}$, which diverges by assumption, yielding the desired contradiction.
2. again we argue by contradiction: suppose that the series of multiples $\sum_{n=0}^{\infty} c a_{n}$ converges. Then, the sequence $\left\{T_{k}=\sum_{n=0}^{k} c a_{n}\right\}$ of partial sums converges. Note though that $T_{k}=\sum_{n=0}^{k} c a_{n}=c \sum_{n=0}^{k} a_{n}=$ $c S_{k}$, where S_{k} is the $k^{t h}$ partial sum of the series $\sum_{n=0}^{\infty} a_{n}$. Since $\left\{T_{k}\right\}$ converges, the sequence $\left\{\frac{1}{c} T_{k}=S_{k}\right\}$ also converges, by the arithmetic of sequences (since the constant sequence $\left\{\frac{1}{c}\right\}$ converges), and so the original series converges, a contradiction.
