Exam Question Topic: CriticalPoints

Find and classify the critical points of the function

$$f(x,y) = 3x^4 + 12xy + 4y^3.$$

Calculate the value of the function at each of the critical points.

Solution

$$f(x,y) = 3x^4 + 12xy + 4y^3; \ f_x = 12x^3 + 12y; \ f_y = 12x + 12y^2$$

So the partial derivatives are zero when $x^3 + y = 0$; $x + y^3 = 0$. Substituting for x gives $-y^6 + y = 0$ i.e. $y(1 - y^5) = 0$. The only real solutions are y = 0, y = 1. When y = 0, x = 0 and when y = 1, x = -1. Calculating the second partial derivatives gives

$$f_{xx} = 36x^2$$
; $f_{yy} = 24y$; $f_{xy} = 12$. So $\Delta = f_{xy}^2 - f_{xx}f_{yy} = 144 - 864x^2y$

So at $(0,0), \Delta = 144 > 0$ so (0,0) is a saddle point. At $(-1,1), \Delta = 144 - 864 < 0$ so (-1,1) is a local minimum $(f_{xx} > 0)$. The values of f at the critical points are f(0,0) = 0; f(-1,1) = -5.