Exam Question

Topic: CriticalPoints
Find and classify the critical points of the function

$$
f(x, y)=3 x^{4}+12 x y+4 y^{3} .
$$

Calculate the value of the function at each of the critical points.

Solution

$$
f(x, y)=3 x^{4}+12 x y+4 y^{3} ; f_{x}=12 x^{3}+12 y ; f_{y}=12 x+12 y^{2}
$$

So the partial derivatives are zero when $x^{3}+y=0 ; x+y^{3}=0$.
Substituting for x gives $-y^{6}+y=0$ i.e. $y\left(1-y^{5}\right)=0$.
The only real solutions are $y=0, y=1$.
When $y=0, x=0$ and when $y=1, x=-1$.
Calculating the second partial derivatives gives

$$
f_{x x}=36 x^{2} ; f_{y y}=24 y ; f_{x y}=12 . \text { So } \Delta=f_{x y}^{2}-f_{x x} f_{y y}=144-864 x^{2} y
$$

So at $(0,0), \Delta=144>0$ so $(0,0)$ is a saddle point.
At $(-1,1), \Delta=144-864<0$ so $(-1,1)$ is a local minimum $\left(f_{x x}>0\right)$.
The values of f at the critical points are $f(0,0)=0 ; f(-1,1)=-5$.

