In what follows you may assume that the following notation applies

$$
y=y(x), y^{\prime}=\frac{d y}{d x} .
$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.

Question

Find $y(x)$ such that

$$
I=\int_{0}^{a} d x\left(y^{2}+2 y^{\prime 2}+y^{\prime \prime 2}\right)
$$

is stationary and $y(0)=1+\frac{5 a}{4}, y(a)=\frac{5}{3}+\frac{3 a}{4}, y^{\prime}(0)=0, y^{\prime}(a)=0$ where $a=\log 3$.

Answer

The relevant E-L equation is (generalistion 1)

$$
\frac{d^{2}}{d x^{2}}\left(2 y^{\prime \prime}\right)-\frac{d}{d x}\left(4 y^{\prime}\right)+2 y=0
$$

which gives

$$
y^{i v}-2 y^{\prime \prime}+y=0
$$

From lectures it is convenient to write the solution as

$$
y=A \cosh x+B \sinh x+C x \cosh x+D x \sinh x
$$

$y^{\prime}(0)=0 \Rightarrow 0=B+C$
$y(0)=1+\frac{5 \log 3}{4} \Rightarrow A=1+\frac{5}{4} \log 3$
Since at $x=\log 3, \cosh x=\frac{5}{3}, \sinh x=\frac{4}{3}$ we have that the 2 remaining conditions $\Rightarrow B=0$ (and so $C=0$), and $D=-1$. Hence $y=A \cosh x-$ $x \sinh x$, where $A=1+\frac{5}{4} \log 3$.

