In what follows you may assume that the following notation applies

$$y = y(x), \ y' = \frac{dy}{dx}.$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.

Question

Find the curves y = y(x) which make the following functional integrals stationary

(i)
$$\int_0^1 y' \, dx$$

(ii)
$$\int_0^1 yy' \, dx$$

(iii)
$$\int_0^1 xyy' \, dx$$

where is each case y satisfies the boundary conditions y(0) = 0, y(1) = 1.

Answer

(i)
$$F(y, y', x) = y'$$
:
EL equation is $\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0$
Thus stationary integral occurs when
 $\frac{\partial F}{\partial y} = 0; \ \frac{\partial F}{\partial y'} = 1 \Rightarrow 0 - \frac{d}{dx}(1) = 0$
i.e., $0 = 0$
i.e., for any $y(x)$ you like!
[Why?
 $\int_0^1 y' \, dx = \int_0^1 \frac{dy}{dx} \, dx = \int_{y(0)}^{y(1)} dy = |ds \int_0^1 dy$

for <u>all</u> y = y(x). Same answer so always stationary.]

= 1

(ii)
$$F(y, y', x) = y'$$

 $\frac{\partial F}{\partial y} = y'; \ \frac{\partial F}{\partial y'} = y$
so E-L equation becomes

$$y' - \frac{d}{dx}(y) = 0$$

$$\Rightarrow y' - y' = 0$$

$$0 = 0$$

 \Rightarrow stationary integral for any y(x) you like (as above) [Why?

$$\int_0^1 y' y \, dx = \int_0^1 \frac{d}{dx} \left(\frac{y^2}{2}\right) \, dx$$
$$= \left[\frac{y^2}{2}\right]_{y(0)}^{y(1)}$$
$$= \left[\frac{y^2}{2}\right]_0^1$$
$$= \frac{1}{2}$$

Same value for whatever y you pick, so stationary!]

(iii)
$$F(y, y', x) = xyy'$$

 $\frac{\partial F}{\partial y} = xy'; \quad \frac{\partial F}{\partial y'} = xy \text{ so E-L equation becomes}$
 $xy' - \frac{d}{dx}(xy) = 0$
 $\Rightarrow xy' - y - xy' = 0$
 $\Rightarrow y = 0$

So apparently y = 0 for all x is the curve which minimises the integral. Indeed it satisfies the E-L equation, but <u>NOT</u> the boundary condition that y(1) = 1. Consequently there is <u>NO</u> continuous curve which makes $\int_0^1 xyy' dx$ stationary <u>and</u> satisfies the boundary conditions.