Question

For each of the given functions, calculate its Taylor series about the given point; also, determine the radius and interval of convergence of the resulting power series whereever possible.

1. $f(x)=x^{3}+6 x^{2}+5 x-7$ about $a=6$;
2. $f(x)=e^{3 x}$ about $a=-2$;
3. $f(x)=\cosh (x)$ about $a=1$;

Answer

1. we start by calculating the derivatives of f at $a=6$:
$f^{(0)}(6)=f(6)=455 ; f^{(1)}(6)=f^{\prime}(6)=185 ; f^{(2)}(6)=48 ; f^{(3)}(6)=6 ; f^{(n)}(6)=0$ for $n \geq 4$.
Hence, the Taylor series for f centered at $a=6$ is

$$
\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(6)(x-6)^{n}=455+185(x-6)+\frac{1}{2} 48(x-6)^{2}+\frac{1}{6} 6(x-6)^{3} .
$$

The radius of convergence of this series is ∞ (using the root test, for instance), and so the interval of convergence is \mathbf{R}.
2. we start by calculating that $f^{(n)}(x)=3^{n} e^{3 x}$ for $n \geq 0$, and so $f^{(n)}(-2)=$ $3^{n} e^{-6}$. Hence, the Taylor series for f centered at $a=-2$ is

$$
\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(-2)(x+2)^{n}=e^{-6} \sum_{n=0}^{\infty} \frac{3^{n}}{n!}(x+2)^{n}
$$

The radius of convergence of this series is ∞ (using the ratio test, for instance), and so the interval of convergence is \mathbf{R}.
3. we start here by recalling that

$$
f^{(n)}(x)= \begin{cases}\cosh (x) & \text { for } x \text { even, and } \\ \sinh (x) & \text { for } x \text { odd }\end{cases}
$$

So, we have that $f^{(n)}(1)=\cosh (1)=\frac{1}{2}\left(e+\frac{1}{e}\right)$ for n even, and $f^{(n)}(1)=$ $\sinh (1)=\frac{1}{2}\left(e-\frac{1}{e}\right)$ for n odd. Hence, the Taylor series for f centered at $a=1$ is

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(1)(x-1)^{n} & =\sum_{k=0}^{\infty} \frac{1}{(2 k)!} f^{(2 k)}(1)(x-1)^{2 k}+\sum_{k=0}^{\infty} \frac{1}{(2 k+1)!} f^{(2 k+1)}(1)(x-1)^{2 k+1} \\
& =\frac{e^{2}+1}{2 e} \sum_{k=0}^{\infty} \frac{1}{(2 k)!}(x-1)^{2 k}+\frac{e^{2}-1}{2 e} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)!}(x-1)^{2 k+1}
\end{aligned}
$$

The radius of convergence of this series is ∞ (using the ratio test, for instance), and so the interval of convergence is \mathbf{R}.

