Question

(a) Solve the following system of equations

$$
\begin{aligned}
x+2 y+2 z & =11 \\
2 x-y+z & =3 \\
-4 x+7 y+z & =13
\end{aligned}
$$

Give a geometrical interpretation.
(b) Write down a $3 x 3$ matrix which represents a transformation in 3-dimensional space consisting of a rotation of 60° about the z-axis together with a magnification in the z-direction by a scale factor of 2 . Write down its inverse and check your answer by multiplication.

Answer

(a) | 1 | 2 | 2 | 11 | | 1 | 2 | 2 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | -1 | 1 | 3 | \rightarrow | 0 | -5 | -3 | -19 |
| -4 | 7 | 1 | 13 | | 0 | 15 | 9 | 57 |

So $x+2 y+2 z=11$ $5 y+3 z=19$
Let $z=t$ then $y=\frac{19-3 t}{5}$
Thus $x=11-2 t-2\left(\frac{19-3 t}{5}\right)=\frac{55-10 t-38+6 t}{5}=\frac{17-4 t}{5}$
So $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}\frac{17}{5} \\ \frac{19}{5} \\ 0\end{array}\right)+t\left(\begin{array}{c}\frac{-4}{5} \\ \frac{-3}{5} \\ 1\end{array}\right)$
This system represents three plans meeting in a common line, whose equation is the solution.
(b) $A=\left(\begin{array}{ccc}\frac{1}{2} & \frac{-\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 2\end{array}\right)$
$A^{-1}=\left(\begin{array}{ccc}\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{-\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2}\end{array}\right)$

Check $A A^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

