Question

(a) A Markov chain has the infinite transition probability matrix given below. Classify the states, justifying your conclusions. Find the mean recurrence time for any positive recurrent states. (Label the states $1,2,3, \cdots$ in order.)

$$
\left(\begin{array}{cccccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
\frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & \frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & \frac{2}{5} & 0 & \frac{3}{5} & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & \frac{2}{7} & 0 & 0 & \frac{5}{7} & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & \frac{2}{9} & 0 & 0 & 0 & \frac{7}{9} & 0 & . & . \\
0 & 0 & 0 & 0 & \frac{2}{11} & 0 & 0 & 0 & 0 & \frac{9}{11} & . & . \\
. & . & . & . & . & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . & . & . & . & .
\end{array}\right)
$$

(b) Draw a transition diagram and write down the transition matrix for a Markov chain having four intercommunicating positive recurrent states each of period 3, and three intercommunicating transient states.

Answer
(a) $\{1,2\}$ forms a closed irreducible finite subchain, so that both states are positive recurrent. $f_{22}^{(1)}=\frac{2}{3}>0$, so that both states are aperiodic.

$$
\begin{aligned}
\mu_{2} & =1 \cdot \frac{2}{3}+2 \cdot \frac{4}{3}=\frac{4}{3} \\
\mu_{1} & =2 \cdot \frac{1}{3}+3 \cdot \frac{2}{3} \cdot \frac{1}{3}+4\left(\frac{2}{3}\right)^{2} \cdot \frac{1}{3}+5 \cdot\left(\frac{2}{3}\right)^{3} \cdot \frac{1}{3}+\ldots \\
& =\frac{2}{3}+\frac{1}{3}\left(3 \cdot \frac{2}{3}+4 \cdot\left(\frac{2}{3}\right)^{2}+\ldots\right)
\end{aligned}
$$

either.

$$
\begin{aligned}
\text { Let } s & =3 \frac{2}{3}+4\left(\frac{2}{3}\right)^{2}+5\left(\frac{2}{3}\right)^{3}+\ldots \\
\frac{2}{3} s & =3\left(\frac{2}{3}\right)^{2}+4\left(\frac{2}{3}\right)^{3}+\ldots \\
\frac{1}{3} s & =2+\left(\frac{2}{3}\right)^{3}+\ldots \\
& =\frac{1}{3}+1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\ldots \\
& =\frac{1}{3}+\frac{1}{1-\frac{2}{3}}=\frac{1}{3}+3 \\
& =\frac{10}{3} \\
\text { So } \mu_{1} & =\frac{2}{3}+\frac{1}{3} \cdot 10=4
\end{aligned}
$$

or.

$$
\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}=1 \quad \frac{1}{\mu_{1}}=\frac{1}{4}
$$

State 3 is transient, leading to $\{1,2\}$ in one step.
State 4 is absorbing.
State $\{5,6,7, \ldots\}$ form a closed irreducible subchain. $f_{55}^{(1)}=\frac{1}{3}>0$. so they are all aperiodic.
Consider state 5.
The Markov chain can return to 5 at the nth step $(n>1)$ only via the path

$$
5 \rightarrow 6 \rightarrow 7 \rightarrow \ldots \rightarrow 5+(n-1) \rightarrow 5
$$

$$
\begin{aligned}
\text { So } \begin{aligned}
f_{55}^{(n)} & =\frac{2}{3} \cdot \frac{3}{5} \cdot \frac{5}{7} \cdot \frac{7}{9} \cdots \frac{2 n-3}{2 n-1} \cdot \frac{2}{2 n+1}=\frac{4}{(2 n-1)(2 n+1)} \\
& =\frac{2}{2 n-1}-\frac{2}{2 n+1} \\
\text { So } f_{55} & =\frac{1}{3}+\sum_{n=2}^{\infty}\left(\frac{2}{2 n-1}-\frac{2}{2 n+1}\right)=\frac{1}{3}+\frac{2}{3}=1
\end{aligned} \text { = }
\end{aligned}
$$

So state 5 is recurrent.

$$
\mu_{5}=\sum_{n=1}^{\infty} n f_{00}^{(n)}=\frac{1}{3}+\sum_{n=2}^{\infty} \frac{n}{(2 n-1)(2 n+1)}=\infty
$$

Thus states 5, 6, 7... are all null-recurrent.
(b) Example

$$
\left[\begin{array}{lllllll}
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

