Question

A gambler with initial capital z plays against an infinitely rich opponent. At each play the gambler wins 2 with probability p, and loses 1 with probability $q=1-p$. Letting q_{z} denote the probability that the gambler will eventually be ruined, show that, for $z \geq 1$,

$$
q_{z}=p q_{z+2}+q q_{z-1}
$$

giving a careful explanation of your reasoning. What is the value of q_{0} ?
Find the general solution of the above difference equation, and include a discussion of repeated roots when they occur. (The auxiliary equation has 1 as a root.)

Use the assumption that $q_{z} \rightarrow 0$ as $z \rightarrow \infty$, together with the value of q_{0}, to show that

$$
\begin{gathered}
q_{z}=1 \text { if } \mathrm{q} \geq 2 \mathrm{p} \\
q_{z}=\left[-\frac{1}{2}+\left(\frac{1}{4}+\frac{q}{p}\right)^{\frac{1}{2}}\right] \text { if } \mathrm{q}<2 \mathrm{p}
\end{gathered}
$$

Answer

we argue conditionally on the result of the first play, as follows:

$$
\begin{aligned}
q_{z} & =P(\text { gambler wins } 1 \text { st bet and subsequently ruined }) \\
& +P(\text { gambler loses } 1 \text { st bet and subsequently ruined }) \\
& =P(\text { ruin } \mid \text { wins } 1 \text { st bet }) \cdot P(\text { wins } 1 \text { st bet }) \\
& +P(\text { ruin } \mid \text { loses } 1 \text { st bet }) \cdot P(\text { loses } 1 \text { st bet }) \\
& =q_{z+2} \cdot p+q_{z-1} \cdot q
\end{aligned}
$$

Now $q_{0}=1$.
To solve the difference equation. The auxiliary equation is

$$
p \lambda^{3}-\lambda+q=0
$$

i.e.

$$
(\lambda-1)\left(p \lambda^{2}+p \lambda-q\right) \quad(\text { using } p+q=1)
$$

So the roots are

$$
\lambda_{1}=-\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{q}{p}} \quad \lambda_{2}=-\frac{1}{2}-\sqrt{\frac{1}{4}+\frac{q}{p}} \quad \lambda_{3}=1
$$

Now $\lambda_{2}<-1$, and so the only possibilities for a repeated root is if $\lambda_{1}=1$ in that case

$$
\sqrt{\frac{1}{4}+\frac{q}{p}}=\frac{3}{2} \quad \text { which gives } q=2 p
$$

The general solution is

$$
q_{z}=A+B z+C \lambda_{2}^{z}
$$

Since $\lambda_{2}<-1$ this oscillates unboundedly if $c \neq 0$ and $\rightarrow \infty$ if $c=0 \& B \neq 0$ Thus $q_{z}=A$ and so since $q_{0}=1$,

$$
q_{z}=1 \quad \text { for all } z
$$

Now if $p \neq q \quad q_{z}=A+B \lambda_{1}^{z}+C \lambda_{2}^{z}$
Now $\left|\lambda_{2}\right|>\left|\lambda_{1}\right|$ and so if $C \neq 0 q_{z}$ oscillates unboubdely as $z \rightarrow \infty$. So $C+0$.
If $q>2 p$ then $\lambda_{1}>1$ and so $q_{z} \rightarrow \pm \infty$ as $z \rightarrow \infty$ if $B \neq 0$. Thus $\mathrm{A}=0$ by the given assumption and $q_{0}=1$ gives $B=1$.

To summaries:
If

$$
q \geq 2 p \text { then } q_{z}=1
$$

If

$$
q<2 p q_{z}=\lambda_{1}^{z}=\left[-\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{q}{p}}\right]^{z}
$$

